Foreword

First of all, thank you for purchasing the JAC300 series inverter!

The JAC300 series inverter is a high performance vector inverter designed to drive asynchronous motors. It can be used for driving of packaging, food, fans, pumps and various automated production equipment.

This manual introduces the functional characteristics and usage methods of JAC300 series inverters, including product selection, parameter setting, operation debugging, maintenance inspection, etc. Please read this manual carefully before use. Equipment manufacturers please send this manual with the equipment. End users, convenient for subsequent reference.

Precautions

• To illustrate the details of the product, the illustrations in this manual are sometimes in the state of removing the cover or safety cover. When using this product, be sure to install the cover or cover as required and follow the instructions in the manual.

• The illustrations in this manual are for illustrative purposes only and may differ from the products you ordered.

 The company is committed to continuous improvement of products, product features will continue to upgrade, and the information provided is subject to change without notice.

◆If you have any problems in use, please contact our regional agents or directly contact our customer service center. Customer Service Phone: 400-680-9991

Unpacking inspection:

When unpacking, please confirm carefully:

Whether the model name and inverter rating of the machine name are consistent with your order. The box contains the machine you ordered, the product certificate, the user manual and the warranty.

Whether the product is damaged during transportation. If any kind of omission or damage is found, please contact our company or your supplier.

First time use:Users who are using this product for the first time should read this manual carefully. If you have any doubts about some functions and performance, please consult our technical support staff for help, which is beneficial to the correct use of this product.

CONTENTS

С	hapte	r 1 Safety Information and Precautions	4
	Cha	pter 2 Product Information	
	2.1	Product naming and nameplate identification	12
	2.2	Name of each part of the inverter	13
	2.3	Basic technical specifications	14
	Cha	pter 3 Installation Instructions	16
	3.1	Mechanical installation	16
	3.2	Electrical Installation	19
	Cha	pter 4 Operation Display	
	4.1 (Dperation and display interface introduction	
	Cha	pter 5 Function Parameter List	
	Cha	pter 6 Selection and Size	
	6.1 I	nverter electrical specifications	
	6.2	Inverter appearance and size	129
	6.3	Keyboard size	
	6.4	Keyboard bracket opening size	130
	6.5 \$	Selection of brake unit and braking resistor	131
	Cha	pter 7 Maintenance and Troubleshooting	
	7.1	Daily maintenance and maintenance of the inverter	
	7.2	Fault alarm and countermeasure	135
	7.3	Fault alarm and countermeasure	140
	App	endix C: Modbus Communication Protocol	142
	Warr	anty agreement	153

Chapter 1 Safety Information and Precautions

Security definition:

In this manual, safety precautions fall into two categories:

Danger: A situation that may result in serious injury or even death due to the danger of not operating as required;

Note: Due to the danger of not operating as required, it may cause moderate or minor injury and equipment damage;

Please read this chapter carefully when installing, commissioning and repairing this system. Be sure to follow the safety precautions required in this chapter. Any injury or loss caused by illegal operation is not related to the company.

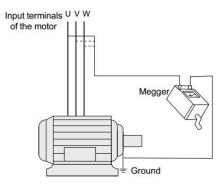
1.1 Safety Precautions

Stage of use	Securit y Level	matter
	Dange r	 Do not install the control system when it is found that water, parts are missing or parts are damaged when unpacking! If the packing list does not match the actual name, please do not install it!
Before installation	attenti on	 It should be lifted and handled gently during transportation, otherwise there is danger of damage to the equipment! Do not use the damaged drive or the missing inverter. Risk of injury! Do not touch the components of the control system with your hands, otherwise there is a danger of electrostatic damage!
During installation	Dange r	 Please install on flame retardant objects such as metal; keep away from combustibles. Otherwise it may cause a fire! Do not loosen the fixing bolts of the equipment components, especially those with red markings!

Stage of	Securit		
use	y Level	matter	
	attenti on	 Do not drop the wire lead or screw into the inverter. Otherwise it will cause damage to the inverter! Install the inverter in a place where there is less vibration and direct sunlight. When two or more inverters are placed in the same cabinet, please pay attention to the installation position to ensure the heat dissipation effect. 	
	Dange r	 Must be constructed by professional electrical engineers, otherwise there will be unexpected dangers! There must be a circuit breaker between the inverter and the power supply, otherwise a fire may occur! Please confirm that the power supply is in zero energy state before wiring, otherwise there is danger of electric shock! Please correctly ground the inverter according to the standard, otherwise there is danger of electric shock! 	
Wiring	attenti on	 Never connect the input power to the output terminals (U, V, W) of the inverter. Pay attention to the marking of the terminal block, do not connect the wrong line! Otherwise the drive is damaged! Never connect the braking resistor directly between the DC bus (+) and (-) terminals. Otherwise it will cause a fire! Please refer to the manual for the wire diameter used. Otherwise an accident may occur! The encoder must use shielded wires, and the shield must ensure reliable grounding at one end! 	
Before powering up	Dange r	Please confirm whether the voltage level of the input power supply is consistent with the rated voltage level of the inverter; whether the wiring positions on the power input terminals (R, S, T) and output terminals (U, V, W) are correct; and pay attention to check and frequency conversion. Whether there is a short circuit in the peripheral circuit connected to the device, and whether the	

Stage of	Securit		
use	y Level	matter	
		connected circuit is tight, otherwise the inverter will be damaged!	
		• No part of the inverter is required to withstand voltage test. The	
		product has been tested at the factory. Otherwise it may cause an	
		accident!	
	•	The inverter must be covered before it can be powered on. Failure	
		to do so may result in electric shock!	
		• All peripheral accessories must be wired in accordance with the	
	attenti	instructions in this manual and wired in accordance with the circuit	
	on	connections provided in this manual. Otherwise it will cause an	
		accident!	
	Â	 Do not open the cover after powering on. Otherwise there is a danger of electric shock! 	
	Dange	Do not touch any input/output terminals of the inverter. Otherwise	
After	r	there is danger of electric shock!	
power-on	attenti	 If parameter identification is required, please pay attention to the danger of injury during motor rotation. Otherwise it may cause an accident! 	
	on	Do not change the inverter manufacturer parameters at will. Failure to do so may result in damage to the equipment!	
Running	Dange r	 Non-professional technicians should not detect signals during operation. Failure to do so may result in personal injury or equipment damage! Do not touch the cooling fan and discharge resistor to test the temperature. Otherwise it may cause burns! 	
		 When the inverter is running, you should avoid something falling into the device. Otherwise it will cause equipment demage! 	
	attenti	 into the device. Otherwise it will cause equipment damage! Do not use the contactor on/off method to control the start and stop 	

Stage of use	Securit y Level	matter
	on	of the inverter. Otherwise it will cause equipment damage!
Maintenan ce time	Dange r	 Do not perform maintenance and maintenance on the inverter without professional training. Failure to do so may result in personal injury or equipment damage! Do not repair or maintain the equipment with electricity. Otherwise there is danger of electric shock! Make sure that the drive's input power is turned off for 10 minutes before the drive can be serviced and repaired. Otherwise the residual charge on the capacitor will cause harm to people! Before performing maintenance work on the inverter, make sure that the inverter is safely disconnected from all power sources. All pluggable plug-ins must be plugged and unplugged in case of power failure! The parameters must be set and checked after replacing the inverter.
	Ŵ	The rotating motor feeds the inverter so that the drive is energized even when the motor is stopped and the power is turned off. Before
	attenti	performing maintenance work on the inverter, make sure that the
	on	motor is safely disconnected from the inverter.


1.2 Precautions

1) Leakage protector RCD requirements

The device will generate large leakage current flowing through the protective grounding conductor during operation. Install a Type B residual current protector (RCD) on the primary side of the power supply. When selecting a leakage protector (RCD), consider the transient and steady-state earth leakage currents that may occur during startup and operation of the equipment, select a dedicated RCD with high harmonic suppression, or a common RCD with large residual current.

2) Motor insulation inspection

After the motor is used for the first time, before being used for a long time, and before the periodic inspection, the motor insulation inspection should be done to prevent damage to the inverter due to insulation failure of the motor winding. When checking the insulation, be sure to separate the motor wiring from the inverter. It is recommended to use 500V.For the stamped megger, the measured insulation resistance shall be not less than 5 M Ω .

3) Thermal protection of the motor

If the selected motor does not match the rated capacity of the inverter, especially when the rated power of the inverter is greater than the rated power of the motor, be sure to adjust the parameter value of the motor protection in the inverter or install a thermal relay in front of the motor to protect the motor.

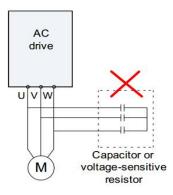
4) Operating above the power frequency

The inverter provides an output frequency of 0Hz~500Hz. If the customer needs to operate above 50Hz, please consider the bearing capacity of the mechanical device.

5) Mechanical vibration

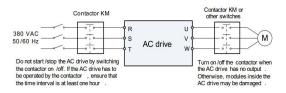
At some output frequencies, the inverter may encounter the mechanical resonance point of the load device, which can be avoided by setting the jump frequency parameter in the inverter.

6) About motor heating and noise


Because the output voltage of the inverter is PWM wave and contains certain harmonics, the

- 8 -

temperature rise, noise and vibration of the motor will increase slightly compared with the power frequency operation.


7) The case where the output side has a pressure sensitive device or a capacitor with improved power factor

The output of the inverter is PWM wave. If the output side is equipped with a capacitor with improved power factor or a varistor for lightning protection, it may cause the inverter to over-current or even damage the inverter. Please do not use.

8) Switching devices such as contactors used at the input and output of the inverter

If a contactor is installed between the power supply and the input of the inverter, this contactor is not allowed to control the start and stop of the inverter. It is necessary to use this contactor to control the start and stop of the inverter, and the interval should not be less than one hour. Frequent charging and discharging tends to reduce the service life of the capacitors in the inverter. If a switching device such as a contactor is installed between the output terminal and the motor, ensure that the inverter performs the on/off operation when there is no output, otherwise the module inside the inverter may be damaged.

9) Use outside of rated voltage

It is not suitable to use the inverter outside the allowable working voltage range specified in the manual, which may cause damage to the components inside the inverter. If needed, Please use the corresponding step-up or step-down device to transform the power supply and input it to the inverter.

10) Three-phase input changed to two-phase input

Do not change the three-phase inverter to two-phase. Failure to do so will result in malfunction or damage to the inverter.

11) Lightning shock protection

Although the inverter is equipped with lightning overcurrent protection device, it has certain self-protection ability for the induction lightning. However, for frequent lightning, the customer should also install lightning protection device at the front end of the inverter.

12) Altitude and derating

In areas where the altitude is more than 1000 m, the heat dissipation effect of the inverter is deteriorated due to the thin air, and it is necessary to derate the use. Please contact us for technical consultation in this case.

13) Some special usage

If the customer needs to use the method other than the recommended wiring diagram provided in this manual, such as the common DC bus, please consult with us.

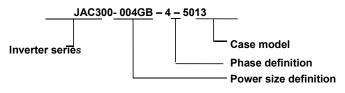
14) Pay attention to the inverter when it is scrapped

The electrolytic capacitor of the main circuit and the electrolytic capacitor on the printed circuit board may explode when incinerated. Toxic gases are generated when plastic parts are incinerated. Please dispose of it as industrial waste.

15) About the adapter motor

 The standard adapter motor is a four-pole squirrel cage induction motor. If it is not the above motor, please select the inverter according to the rated current of the motor.

 The cooling fan of the non-inverter motor is coaxially connected with the rotor shaft. When the speed is reduced, the cooling effect of the fan is reduced. Therefore, if the motor is overheated, a strong exhaust fan or a variable frequency motor should be installed.


 The inverter has built-in matching motor standard parameters. According to the actual situation, it is necessary to identify the motor parameters or modify the default values to match the actual values as much as possible. Otherwise, the operation effect and protection performance will be affected.

The inverter will alarm or even blow up the machine due to a short circuit inside the cable or motor. Therefore, first perform the insulation short-circuit test on the initially installed motor and cable, and also perform this test frequently in routine maintenance. Note that it is important to disconnect the drive from the part under test when doing this test.

Chapter 2 Product Information

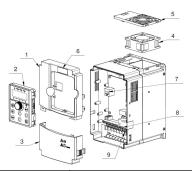
2.1 Product naming and nameplate identification

2.1.1 Naming rules

1. Inverter series: representing different series

2. Power size definition: The number indicates the power, ranging from 0.4-400KW, G stands for

general purpose machine, P stands for fan pump type, B stands for brake unit


3、Phase number definition: three-phase 380V is indicated by 4, single-phase 220V is represented

by S2, and three-phase 220V is represented by 2

4. Shell model definition: according to the model of the model used in this model

2.2 Name of each part of the inverter

The JAC300 series inverter is a plastic structure type, and the appearance is as shown below:

Code	name	explanation
1	Upper cover Protect internal components	
2	keyboard	See "Keyboard Operations"
3	lower lid	Protect internal components
4	cooling fan	Inverter cooling fan
5	Fan cover	Fan grille
6	Nameplate	Product nameplate information
7	Keyboard interface	Connecting keyboard
8	Control terminal	Control circuit terminal block
9	Main circuit terminal	Main circuit terminal block

2.3 Basic technical specifications

Item		Specification
	Maximum frequency	Vector control: 0~500Hz; V/F control: 0~500Hz
	Carrier frequency	$0.8 \text{kHz} \sim 12 \text{kHz}$ Automatic adjustment of carrier frequency based on load characteristics
	Input frequency resolution	Digital setting : 0.01Hz Analog setting : Maximum frequency×0.025%
	control method	Open loop vector control (SVC) V/F control
	Starting torque	G type machine: 0.5Hz/150% (SVC) P type machine: 0.5Hz/100%
	Speed range	1: 100 (SVC)
	Constant-speed accuracy	±0.5% (SVC)
Basic functions	Overload capacity	G type machine: 60s for 150% of the rated current P type machine: 60s for 120% of the rated current
	Torque boost	Automatic torque boost; Manual torque boost0.1%~30.0%
	V/F curve	Three ways: straight V/F curve; multi-point V/F curve; N-th power type V/F curve (1.2th power, 1.4th power, 1.6th power, 1.8th power, 2th power)
	V/F Separation	2 ways: full separation, semi-separation
	Acceleration /	Straight-line or S-curve acceleration and deceleration
	deceleration	Four groups of acceleration/deceleration time with the
	curve	range of 0.0-6500.0s

JAC300	Series	Inverter	User	Manual

	DC braking	DC braking frequency: 0.00Hz~ Maximum frequency
	Built-in brake unit	Braking time : 0.0s~36.0s Brake action current value :
	Duit-in brake unit	0.0%~100.0%
	Jog control	Jog frequency range: 0.00Hz~50.00Hz。
	Jug control	Jog acceleration/deceleration time0.0s~6500.0s。
		The operation panel is given, the control terminal is given,
	Command source	and the serial communication port is given.
		Can be switched in a variety of ways
		Multiple frequency sources: digital reference, analog voltage
	Frequency source	reference, analog current reference, serial port reference. It
		can be switched in a variety of ways.
	Auxiliary	10 auxiliary frequency sources. Flexible implementation of
	frequency source	auxiliary frequency trimming and frequency synthesis
		standard:
		7 digital input terminals (customizable high-speed pulse
Operation		input, support 100K)
	Input terminal	2 analog input terminals, 1 only supports 0~10V voltage
		input, 1 supports 0~10V voltage input or 4~20mA current
		input
		Standard: 1 digital output terminal
		1 relay output terminal
		2 analog output terminals, support 0~20mA current output or
	Output terminal	0~10V voltage output
		Expansion ability:
		1 relay output terminal
Display and	LED display	Display the parameter
	Key lock and	Realize partial or all key lock and define the
keyboard	function selection	action range of some keys to prevent misoperation
operation		

	Short circuit test of electrified motor,
	input/output default phase protection,
	overcurrent protection,
Protection	overvoltage protection,
function	undervoltage protection,
	overheat protection,
	overload protection, etc.

Chapter 3 Installation Instructions

3.1 Mechanical installation

3.1.1 Installation Environment

- Ambient temperature: The ambient temperature has a great influence on the life of the inverter. The operating environment temperature of the inverter is not allowed to exceed the allowable temperature range (-10 ° C to 50 ° C).
- 2) Install the inverter on the surface of the flame-retardant object, and have enough space around it to dissipate heat. The inverter is prone to generate a lot of heat when it is working. It is mounted vertically on the mounting bracket with screws.
- 3) Please install it in a place where it is not easy to vibrate. The vibration should be no more than 0.6G. Pay special attention to equipment such as punching machines.
- 4) Avoid being placed in direct sunlight, moisture, or water.
- 5) Avoid places that are corrosive, flammable, or explosive in the air.
- 6) Avoid installation in places with oil, dust, and metal dust.
- 7) JAC300 series plastic casing products are Built-in products, which need to be installed in the final system. The final system should provide corresponding fireproof casing, electrical protective casing and mechanical protective casing, etc., and comply with local laws and regulations and relevant IEC standards.

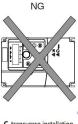
3.1.2 Installation direction

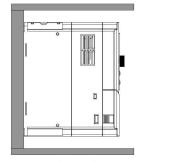
The frequency converter can be mounted on a wall or in a cabinet.

The drive must be mounted in the vertical direction. Please check the installation location as

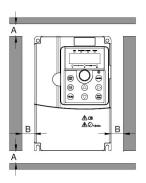
described below.

3.1.3 Installation method



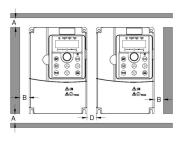

a. Vertical installation

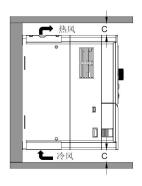
b. Horizontal installation

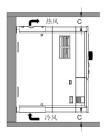

Wall-mounted installation

Flange-Mounted installation

(1) Mark the position of the mounting hole. For the location of the mounting holes, please refer to the outline drawing of the inverter in the Appendix section;

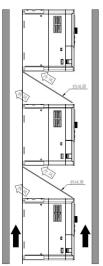

- (2) Fix the screw or bolt to the marked position;
- (3) leaning the inverter against the wall;
- (4) Tighten the fastening screws on the wall.


3.1.4 Single installation



Note: The minimum size for B and C is 100mm.

3.1.5Multiple installations


note:

1. When installing inverters with different sizes, please align the upper positions of each inverter

before installing. This is convenient for later maintenance.

2. The minimum size requirement for B, D and C is 100mm.

Note: When installing vertically, the windshield must be added. Otherwise, multiple inverters will affect each other and cause poor heat dissipation.

3.2 Electrical Installation

3.2.1 Main circuit wiring diagram

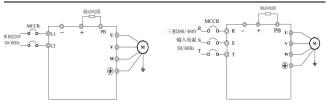


Figure 3-2 Single-phase 0.75-2.2kW wiring standard Figure 3.3 Three-phase 0.75-37kW wiring standard

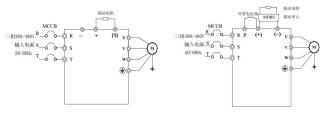


Figure 3.4 Three-phase 45-110kW wiring standard (brake resistor matching)

Figure 3.5 Three-phase

132-315KW

3.2.2 Main circuit terminal description

Inverter main circuit terminal description:

Figure 3-11 0.75KW-5.5KW (5013 model) main circuit terminal block

Figure 3-11 7.5KW-11KW (5023 model) main circuit terminal block

Figure 3-12 15kW-18.5kW (type 5030B) main circuit terminal block

Figure 3-13 22kW (5041B type) main circuit terminal block

Figure 3-14 30kW-37kW (5042B type) main circuit terminal block

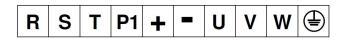


Figure 3-15 45kW-55kW (5050B type) main circuit terminal block

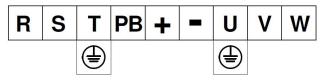


Figure 3-16 75kW-110kW (5061B type) main circuit terminal block

R	S	Т	÷	P1	
	$\textcircled{1}{1}$	U	V	W	

Figure 3-17 132kW-160kW (5063 type) main circuit terminal block

R	S	Т	P1	Ŧ	
		U	V	W	

Figure 3-17 200kW-315kW main circuit terminal block

Terminal mark	Name	Description
R、S、T/L1、L2	Three-phase power input terminal	AC input three-phase power connection point, single-phase inverter connected to R, S, T any two lines
+、PB	Brake resistor connection terminal	Brake resistor connection point
U. V. W	Inverter output terminal	Connecting three-phase motor
	Ground terminal	Ground terminal

note:

• Do not use asymmetric motor cables. If there is a symmetrical grounding conductor in addition to

the conductive shielding in the motor cable, ground the grounding conductor at the inverter and motor terminals.

• Separate the motor cable, input power cable and control cable separately.

• When single-phase input, the "T" terminal is not wired.

3.2.3 Control terminal description

Control circuit terminal layout:

48	5+	485	G	ND	DI1	DI	2	DI3	DI4	DIS	DI6	DI7		R	O2A	RC	D2B	RO	2C
	+10	ov	AI1	A	12	GND	A	01	AO2	DO	COM	OP	+24V		RO	1A	ROI	в	RO1

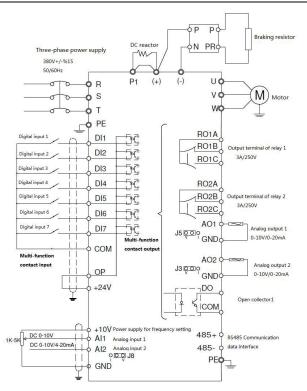

Figure 3-21 Control circuit terminal layout						
Category	Terminal symbol	Terminal name	Function description			
	+10V-GND	External connection of + 10V power supply	Provide power supply of +10V externally, with maximize output current: 10mA It is generally used as working power supply for external potentiometer and the resistance range of potentiometer is $1k\Omega$ ~5k Ω			
Power supply	+24V-COM	External connection of +24V power supply	+24V power supply is provided outwards and generally used as the working power supply for digital input/output terminal and the power supply for external sensor Maximum output current: 200mA			
	OP	Input terminal of external power supply	The factory default is connection to+ 24V When an external signal is used to drive DI1~DI7, OP shall be connected to external power supply and disconnected from+24V power supply terminal			
	Al1-GND	Analog Input Terminal 1	 Input voltage range: DC 0V~10V Input resistance: 22kΩ 			
Analog input	Al2-GND	Analog Input Terminal 2	 Input range: DC 0V~10V/4mA~20mA, as determined by Jumper J8 on the control panel Input resistance: 22kΩ for voltage input and 500Ω for current input. 			
Digital input	DI1- OP	Digital Input 1	1. Optical coupler isolation, with bipolar input			

Figure 3-21 Control circuit terminal layout

Category	Terminal symbol	Terminal name	Function description
	DI2- OP	Digital	2. Input resistance: 2.4kΩ
	DIZ- OF	Input 2	3. Voltage range in input level: 9V~30V
	DI3- OP	Digital	
	DIJ- OF	Input 3	
	DI4- OP	Digital	
		Input 4	
	DI6- OP	Digital	
	510- 01	Input 6	
		Digital	
		Input 7	
		High-speed	Apart from the characteristics of
	DI5- OP	pulse input	DI1~DI7, it may be used as high-speed
		terminal	pulse input channel.
			Maximum input frequency: 100kHz
	AO1-GND		Jumper J5 on the control panel shall
Analog output		Analog	determine voltage or current output.
		Output 1	Output voltage range: 0V~10V
			Output current range: 0mA~20mA
		Analog	Jumper J3 5 on the control panel shall
Analog output	AO2-GND	Output 1	determine voltage or current output.
		Analog	Output voltage range: 0V~10V
		Output 2	Output current range: 0mA~20mA
			Optical coupler isolation, bipolar open
		Digital	collector output
Digital output	DO-COM	Output 1	Output voltage range: 0V~24V
			Output current range: 0mA~50mA
Delay autout			Contact drive capacity:
Relay output	R01A-R01B	Closed terminal	25V ac, 3A, COSØ=0.4 。

Category	Terminal symbol	Terminal name	Function description
	R01A-R01C	Open terminal	30Vdc , 1A
	R02A-R02C	Open terminal	
Secondary interface	RO2A-RO2B	Closed terminal	Contact drive capacity: 25V ac, 3A, COSØ=0.4 。 30Vdc , 1A
Communication interface	485+, 485-	Modbus	Modbus communication interface, non-isolated output

3.2.4 Control loop wiring diagram

1) AI analog input terminal:

Because weak analog voltage signals are particularly susceptible to external interference, shielded cables are generally required, and the wiring distance should be as short as possible, not more than 20m, as shown in Figure 3-22. In the case where some analog signals are seriously disturbed, a filter capacitor or a ferrite core should be added to the analog signal source side, as shown in Figure 3-23.

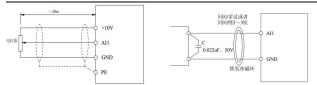


Figure 3-24 Schematic diagram of analog input terminal wiring Figure 3-25 Wiring diagram of analog input terminal processing

2) DI digital input terminal:

Generally, shielded cables are required, and the wiring distance should be as short as possible, not more than 20m. When the active mode is selected, the necessary filtering measures should be taken for the crosstalk of the power supply. Contact control is recommended.

Slipping type wiring (NPN)

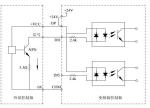


Figure 3-26 Leakage wiring method

This is one of the most common wiring methods. If an external power supply is used, the short-circuit between the +24V and the OP and the short-circuit between the COM and the CME must be removed. The positive terminal of the external power supply is connected to the OP, and the negative terminal of the external power supply is connected to the CME.

Note: Under this type of wiring, the DI terminals of different inverters cannot be used in parallel, otherwise DI may malfunction. If DI terminals are connected in parallel (between different inverters), diodes must be connected in series at the DI terminals. (Anode connected to DI), the diode must meet: IF>10mA, UF<1V, as shown below.

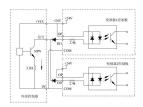


Figure 3-27 Multiple inverters DI terminal and drain type wiring

Source wiring method (PNP)

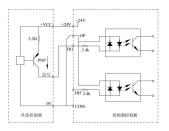


Figure 3-28 Source wiring method

This wiring method must remove the short circuit between the +24V and the OP, connect the +24V to the common terminal of the external controller, and connect the OP to the COM.

Control signal output terminal wiring instructions

3) DO digital output terminal:

When the digital output terminal needs to drive the relay, an absorbing diode should be installed on both sides of the relay coil. Otherwise, it may cause damage to the DC 24V power supply. The drive capacity is no more than 50mA.

Note: Be sure to properly install the polarity of the snubber diode. As shown below. Otherwise, when the digital output terminal has an output, the DC 24V power supply will be burned out immediately.

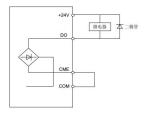


Figure 3-29 Wiring diagram of digital output terminal

Chapter 4 Operation Display

4.1 Operation and display interface introduction

With the operation panel, the inverter can be used to modify the function parameters, the inverter working status monitoring and the inverter running control (starting, stopping). The appearance and function area are as shown below:

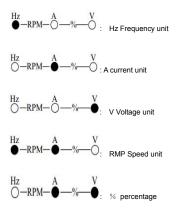
Figure 4-1 Operation panel diagram

Function indicator description:

 RUN: When the light is on, the inverter is in the running state, and when the light is off, the inverter is in the stop state.

• LOC: Keyboard operation, terminal operation and remote operation (communication control)

indicator:


O LOC: Extinguished	Panel start and stop control mode
LOC: Constantly bright	Terminal start and stop control mode
LOC: flicker	Communication start and stop control mode

 FWD: Positive and negative indicator lights, when the light is off, it indicates the forward running state, and when the light is on, it indicates the reverse running state.

• TUNE/TC : Tuning / Torque Control / Fault Indicator. When the light is on, it indicates that it is in the torque control mode. If the light is flashing slowly, it indicates that it is in the tuning state, and the flashing light indicates that it is in the fault state. This indicator is in the middle of the "PRG" and

there are several units: (○ means extinguished; ● means lit)

Digital display area:

A total of 5 LED displays display the set frequency, output frequency, various monitoring data, and

alarm codes.

Keyboard button description table

Table 4-1 Keyboar	d function table
-------------------	------------------

button	name	function
PRG	Programming key	First level menu enters or exits
ENTER	Enter	Enter the menu screen step by step, set the parameter confirmation

JAC300 Series Inve	rter User Manual
--------------------	------------------

	Increment key	Increment of data or function code
\bigtriangledown	Decrement key	Decrease in data or function code
	Shift key	In the stop display interface and the operation display interface, the display parameters can be selected cyclically; when the parameters are modified, the modification bits of the parameters can be selected.
RUN	Run key	In keyboard operation mode, used for running operations
STOP	Stop/reset	When in the running state, press this button to stop the running operation; in the fault alarm state, it can be used to reset the operation. The characteristics of this button are restricted by function code P7-02.
M	Multi-function selection button	According to P7-01 for function switching selection, can be defined as command source, or direction

Chapter 5 Function Parameter List

PP-00 is set to a non-zero value, that is, the parameter protection password is set. In the function parameter mode and the user change parameter mode, the parameter menu must be entered after the password is correctly entered. To cancel the password, set PP-00 to 0.

The parameter menu in the user-defined parameter mode is not password protected.

Group F and Group A are basic function parameters, and Group U is a monitoring function parameter.

The symbols in the function table are as follows:

"
☆": Indicates that the set value of this parameter can be changed while the inverter is in the stop state and running state;

"*": Indicates that the set value of this parameter cannot be changed while the inverter is running;

" • ": The value indicating the parameter is the actual detected record value and cannot be changed.

"*" : Indicates that the parameter is "manufacturer parameter", which is limited to the

manufacturer setting and prohibits the user from performing the operation;

function code	name	Predetermined area	Factory default	change
P0-01	The first motor control method	Construction group Construction group Suitable for general high-performance control applications, one inverter can only drive one motor. V/F control It is suitable for applications where the load requirements are not high, or when one inverter drives multiple motors, such as fans and pumps.		*
P0-02	Command source selection	 Select the channel for the drive control command. Inverter control commands include: start, stop, forward, reverse, jog, fault reset, etc. 0: The operation panel command channel ("LOCAL/REMOT" light is off) is controlled by the RUN, STOP/RES buttons on the operation panel. 	-	**

function	name	Predetermined area	Factory	change
code	name	Tredetermined area	default	change
		 The terminal command channel ("LOCAL/REMOT" light is on) is controlled by the multi-function input terminals FWD, REV, JOGF, JOGR, etc. Communication command channel ("LOCAL/REMOT" light flashes), the running command is given by the host computer through communication. 		
P0-03	Main frequency source X selection	 0: Digital setting (preset frequency P0-08, UP/DOWN can be modified, power is not memorized), When the inverter is powered off and powered up again, the set frequency value returns to the value of P0-08 " Digital Set Preset Frequency". 1: Digital setting (preset frequency P0-08, UP/DOWN can be modified, power-down memory). When the inverter is powered off and powered on again, the set frequency is the set frequency of the last power-down time. The correction amount of the keyboard ▲, ▼ key or terminal UP, DOWN is memorized. Note: The frequency needs to be remembered after the digital setting frequency is stopped. Set P0-23=1 2: Al1 3: Al2 4: Al3 (keyboard potentiometer) The control board provides two analog input terminals (Al1, Al2), Al1 is 0V ~ 10V voltage type input, Al2 can be 0V ~ 10V voltage input, can also be 4mA ~ 20mA current input, selected by Al2 jumper on the control board . The input voltage relationship with the target frequency can be frequency can be frequency is set of a difference of Al1 and Al2 and the corresponding relationship with the set. JAC300 provides 5 sets of a set of a set	4	*

function			Factory	
code	name	Predetermined area	default	change
		correspondence curves, among which 3 sets of		
		curves are linear relationships (2 points		
		correspondence), and 2 sets of curves are arbitrary		
		curves of 4 points correspondence. Users can pass		
		P4-13~P4-27 function code and A6 group function.		
		The code is set.		
		Function code P4-33 is used to set the Al1~Al2		
		two-way analog input, and select which of the five		
		sets of curves.		
		Al is used as the frequency reference, and the		
		voltage/current input corresponds to the set value		
		of 100.0%, which is the percentage of the relative		
		maximum frequency P0-10.		
		5: PULSE pulse setting (DI5)		
		The frequency reference is given by the high speed		
		pulse of terminal DI5.		
		Pulse given signal specifications: voltage range 9V		
		~ 30V, frequency range		
		0 kHz to 100 kHz. The pulse reference can only be		
		input from the multi-function input terminal DI5.		
		The relationship between the input pulse frequency		
		of DI5 terminal and the corresponding setting is set		
		by P4-28~P4-31. The corresponding relationship is		
		the linear correspondence of 2 points. The		
		corresponding setting of 100.0% of the pulse input		
		refers to the relative maximum frequency P0. The		
		percentage of -10.		
		6: Multi-segment instructions		
		When selecting the multi-segment command		
		operation mode, it is necessary to combine		
		different state combinations of the digital input DI terminal to correspond to different set frequency		
		values.		
		JAC300 can set 4 multi-segment command		
		terminals (terminal functions 12~15), 16 states of 4		
		terminals, and can correspond to any 16		
		"multi-segment commands " through PC group		
		function code. "Multi-segment command " is		
		relative maximum frequency P0-10 Percentage.		

function code	name	Predetermined area	Factory	abanga
			default	change
		When the digital input DI terminal is used as the		
		multi-segment command terminal function, it needs		
		to be set in the P4 group. For details, please refer		
		to the relevant function parameters of the P4 group.		
		7: Simple PLC		
		When the frequency source is a simple PLC, the		
		running frequency source of the inverter can be		
		switched between 1~16 arbitrary frequency		
		commands. The holding time of 1~16 frequency		
		commands and the respective		
		acceleration/deceleration time can also be set by		
		the user. Description of the PC group.		
		8: PID		
		Select the output of the process PID control as		
		the operating frequency. Generally used for on-site		
		process closed-loop control, such as constant		
		pressure closed-loop control, constant tension		
		closed-loop control and other occasions. When		
		applying the PID as the frequency source, you		
		need to set the PA group "PID function" related		
		parameters.		
		9: Communication given		
		The frequency is given by the Modbus		
		communication method.		
		The host computer gives data by the		
		communication address 0x1000, the data format is		
		-100.00% to 100.00%, and 100.00% refers to the		
		percentage of the relative maximum frequency		
		P0-10.		
	Auxiliary frequency source Y selection	Same as P0-03 (main frequency source X		
		selection)		
		When the auxiliary frequency source is used as the		
		independent frequency reference channel (that is,		
		the frequency source is selected as X to Y		
P0-04		switching), its usage is the same as that of the main	0	*
		frequency source X. For the usage, refer to the		
		description of P0-03.		
		When the auxiliary frequency source is used as the		
		superposition reference (ie, the composite		
		implementation frequency given by the main		

function		Dradatermined erec	Factory	abang -
code	name	Predetermined area	default	change
		frequency source X and the auxiliary frequency		
		source Y), it is necessary to pay attention to:		
		1. When the auxiliary frequency source is digital		
		timing, the preset frequency (P0-08) does not work.		
		The user adjusts the frequency through the ▲, ▼		
		keys of the keyboard (or UP, DOWN of the		
		multi-function input terminal) directly at the main		
		Adjust based on a given frequency.		
		2. When the auxiliary frequency source is analog		
		input reference (AI1, AI2), the input setting of 100%		
		corresponds to the auxiliary frequency source		
		range, which can be set by P0-05 and P0-06.		
		0: relative to the maximum frequency		
		1: relative to the frequency source X		
	Auxiliary	P0-05 is used to determine the object corresponding to the auxiliary frequency source		
	frequency			
P0-05	source Y range	range. It can be selected relative to the maximum	0	☆
	selection when	frequency or relative to the main frequency source		
	superimposing	X. If it is selected relative to the main frequency		
		source, the range of the auxiliary frequency source		
		will follow the main The frequency X changes with		
		changes.		
	Auxiliary			
	frequency			
P0-06	source Y range	0% ~150%	100%	☆
	when			
	superimposed			
		Unit position: frequency source selection		
		0: main frequency source X		
		1: The result of the main and auxiliary operations		
	_	(the operation relationship is determined by ten		
	Frequency	bits)		
P0-07		2: main frequency source X and auxiliary frequency	00	
	selection	source Y switch		
		3: Main frequency source X and main and auxiliary		
		operation result switching		
		4: Auxiliary frequency source Y and main and		
		auxiliary operation result switching		

function	2020	Predetermined area	Factory	change
code	name	Predetermined area	default	change
		Ten digits: frequency source primary and		
		secondary operation relationship		
		0: main + auxiliary		
		1: main - auxiliary		
		2: the maximum of both		
		3: the minimum of the two		
		The frequency reference channel is selected by this		
		parameter. The frequency reference is achieved by		
		a combination of the primary frequency source X		
		and the secondary frequency source Y. When the		
		frequency source is selected as the main and		
		auxiliary operation, the offset frequency can be se		
		by P0-21, and the offset frequency is superimposed		
		on the main and auxiliary operation results to		
		flexibly respond to various requirements.		
		0.00Hz ~ maximum frequency (P0 -10)		
		When the frequency source is selected as "Digital		
P0-08	Preset frequency	Setting" or "Terminal UP/DOWN", the function		☆
		code value is the initial value of the frequency		
		digital setting of the inverter.		
		0: the direction is consistent		
		1: opposite direction		
		By changing the function code, the purpose of		
	Running	changing the motor steering can be realized		
P0-09	direction	without changing the motor wiring. The effect is	0	\$
		equivalent to adjusting any two wires of the motor		
		(U, V, W) to realize the rotation direction of the		
		motor.		
		50.00Hz ~ 500.00Hz		
	Maximum	In the JAC300, analog input, multi-segment		
P0-10	frequency	instructions, etc., as the frequency source, each	50.00Hz	*
	requericy			
		100.0% is scaled relative to P0-10.		
		0: P0-12 setting		
		1: Al1		
P0-11	Upper frequency		0	*
	source	3: Al3	Ŭ	~
		4: PULSE setting (DI5)		
		5: Communication given		

function		Predetermined area	Factory	-
code	name	Predetermined area	default	change
P0-12	Upper limit frequency	Lower limit frequency P0-14 ~ maximum frequency P0-10	50.00Hz	47
P0-13	Upper frequency offset	0.00Hz ~ maximum frequency P0-10 When the upper limit frequency source is set to the analog setting, P0-13 is used as the offset of the set value, and the offset frequency is superimposed with the upper limit frequency value set by P0-11 as the set value of the final upper limit frequency.	0.00Hz	Ŕ
P0-14	Lower limit frequency	0.00Hz ~ upper limit frequency P0-12 When the frequency command is lower than the lower limit frequency set by P0-14, the inverter can stop, run at the lower limit frequency or run at zero speed. Which operation mode can pass P8-14 (the set frequency is lower than the lower limit frequency operation mode) Settings.	0.00Hz	Å
P0-15	Carrier frequency	$0.5 \text{kHz} \sim 16.0 \text{kHz}$ This function adjusts the carrier frequency of the frequency converter. By adjusting the carrier frequency, the motor noise can be reduced, the resonance point of the mechanical system can be avoided, the line-to-ground leakage current can be reduced, and the interference generated by the frequency converter can be reduced. When the carrier frequency is low, the output current higher harmonic component increases, the motor loss increases. When the carrier frequency is high, the motor loss is reduced, the inverter loss is increased, the temperature rise is reduced, but the inverter loss is increased, and the inverter is increased, and the interference is increased.	Model determinati on	*
P0-16	- 1 ,	0: No 1: yes The carrier frequency is adjusted with temperature, which means that when the inverter detects that its own radiator temperature is high, it automatically reduces the carrier frequency to reduce the temperature rise of the inverter. When the heat sink temperature is low, the carrier frequency gradually	1	\$

JAC300 Series Inverter Use	er Manual
----------------------------	-----------

function		Decide to area in a discussion	Factory	
code	name	Predetermined area	default	change
		returns to the set value. This feature reduces the		
		chance of the drive overheating alarm.		
		0.00s ~ 650.00s(P0-19=2)		
		0.0s \sim 6500.0s(P0-19=1)		
	Acceleration	0s \sim 65000s(P0-19=0)	Model	
P0-17	time 1	Acceleration time refers to the time required for the	determinati	☆
	umen	inverter to accelerate from zero frequency to the	on	
		acceleration/deceleration reference frequency		
		(determined by P0-25).		
		0.00s \sim 650.00s(P0-19=2)		
		0.0s \sim 6500.0s(P0-19=1)		
		0s \sim 65000s(P0-19=0)		
		The deceleration time refers to the time required for		
		the inverter to decelerate to zero frequency from		
		the acceleration/deceleration reference frequency		
		(determined by P0-25).	Model	
	Deceleration	The JAC300 provides 4 sets of		
P0-18	time 1	acceleration/deceleration time. The user can use	determinati	☆
		the digital input terminal DI to switch between	on	
		selections. The four groups of		
		acceleration/deceleration time are set by the		
		following function codes:		
		The first group: P0-17, P0-18; The second group: P8-03, P8-04;		
		The third group: P8-05, P8-06;		
		Group 4: P8-07, P8-08		
		0. 1 second		
P0-19	Acceleration/dec	1: 0.1 second	1	
10-13	eleration unit	2: 0.01 second		~
		0.00Hz to maximum frequency P0-10		
		This function code is valid only when the frequency		
	Auxiliary	source is selected as the main and auxiliary		
	frequency	operation. When the frequency source is the main		
P0-21	-	auxiliary operation, P0-21 is used as the offset		☆
		frequency, and is superimposed with the result of	5.00112	~
	superimposing	the main and auxiliary operations as the final		
	saberinihosing			
		frequency setting value, so that the frequency		
		setting can be more flexible.		

function	name	Predetermined area	Factory	change
code	name	Fieueleimineu area	default	change
P0-22	Frequency command resolution	This parameter is used to determine the resolution of all frequency-dependent function codes.	2	*
P0-23	Digital setting frequency shutdown memory selection	0: no memory 1 : memory This function is only available when the frequency source is digitally set. " Do not remember " means that the digital set frequency value returns to the value of P0-08 (preset frequency) after the inverter stops, and the frequency correction made by the keyboard ▲, ▼ key or terminals UP and DOWN is cleared. "Memory" means that after the inverter stops, the digital set frequency remains the set frequency of the last stop time. The frequency correction made by the keyboard ▲, ▼ key or terminals UP and DOWN remains valid.	0	\$
P0-24	Motor parameter group selection	0: Motor parameter group 1 1: Motor parameter group 2 JAC300 supports the application of frequency converter to divide two motors in time division. Two motors can set motor nameplate parameters, independent parameter tuning, select different control modes, and independently set parameters related to running performance. The motor parameter group 1 corresponds to the function parameter group P1 group and P2 group, and the motor parameter group 2 corresponds to the function parameter group A2 group.The user can select the current motor parameter group through the P0-24 function code, or switch the motor parameters through the digital input terminal DI. When the function code selection conflicts with the terminal selection, the terminal selection shall prevail.	0	*
P0-25	Acceleration/dec eleration time reference frequency	0: Maximum frequency (P0-10) 1: set frequency 2:100Hz Acceleration/deceleration time refers to the acceleration/deceleration time from zero frequency	0	*

function	name	Predetermined area	Factory	change
code	hanne		default	onunge
		to the frequency set by P0-25. Figure 6-1 shows		
		the acceleration/deceleration time.		
		When P0-25 is set to 1, the		
		acceleration/deceleration time is related to the set		
		frequency. If the set frequency changes frequently,		
		the acceleration of the motor changes, so pay attention to the application.		
		0: Operating frequency 1 : Setting frequency		
		This parameter is valid only when the frequency		
		source is digitally set.		
		When determining the $igstarrow$, $igstarrow$ key or terminal		
		UP/DOWN action of the keyboard, what method is		
	Runtime	used to correct the set frequency, that is, whether		
	frequency	the target frequency is increased or decreased		
P0-26	command	based on the operating frequency or increased or	0	*
	UP/DOWN	decreased based on the set frequency.		
	reference	The difference between the two settings is obvious		
		when the inverter is in the acceleration/deceleration		
		process. That is, if the running frequency of the		
		inverter is different from the set frequency, the		
		different choices of the parameters vary greatly.		
		Single digit: operation panel command binding		
		frequency source selection		
		0: no binding		
		1: digital setting frequency		
		2: Al1		
	General	3: Al2		
	Command source bundle	4: AI3		
P0-27		5: PULSE setting (DI5)	0000	☆
	frequency	6: multi-speed		
	source	7: Simple PLC		
		8: PID		
		9: Communication given		
		Tens place: terminal command binding frequency		
		source selection		
		Hundreds place: communication command binding		

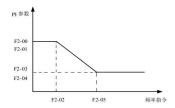
function	201-2		Dradatermined area	Factory	abang-
code	name		Predetermined area	default	change
			frequency source selection		
			Thousands: automatic running binding frequency		
			source selection		
			The meaning of the above frequency reference		
			channel is the same as the main frequency source		
			X selection P0-03, please refer to P0-03 function		
			code description. Different running command		
			channels can bundle the same frequency given		
			channel.		
			When the command source has a bundled		
			frequency source, the frequency source set by		
			P0-03~P0-07 is no longer active during the valid		
			period of the command source.		
			P1 First motor unit		
54.00	Motor	type	0: ordinary asynchronous motor		
P1-00	selection		1: Variable frequency asynchronous motor	0	*
				Model	
P1-01		rated	0.1kW ~400.0kW	determinatio	*
	power			n	
	Motor i	rated		Model	
P1-02	voltage		1V~2000V	determinatio	*
	<u> </u>			n	
				Model	
P1-03		rated	0.01A \sim 655.35A (Inverter power<=55kW)	determinatio	*
	current		0.1A~6553.5A (Inverter power>55kW)		
				n	
	Motor i	rated		Model	
P1-04	frequency		0.01Hz~Maximum frequency	determinatio	*
	1			n	
				Model	
P1-05		rated	1rpm~65535rpm	determinatio	*
	speed			n	
P1-06	Asynchronoi		$0.001\Omega \sim 65.535\Omega$ (Inverter power<=55kW)	Tuning	*
	motor s	stator	$0.0001\Omega \sim 6.5535\Omega$ (Inverter power>55kW)	parameter	

function code	name	Predetermined area	Factory default	change
	resistance			
P1-07	Asynchronous motor rotor resistance	0.001Ω ~65.535Ω (Inverter power<=55kW) 0.0001Ω ~6.5535Ω (Inverter power>55kW)	Tuning parameter	*
P1-08	Asynchronous motor leakage inductance	0.01mH ~655.35mH (Inverter power<=55kW) 0.001mH~65.535mH (Inverter power≻55kW)	Tuning parameter	*
P1-09	Asynchronous motor mutual inductance	0.1mH \sim 6553.5mH (Inverter power<=55kW) 0.01mH \sim 655.35mH (Inverter power>55kW)	Tuning parameter	*
P1-10	Asynchronous motor no-load current	0.01A ∼P1-03 (Inverter power<=55kW) 0.1A∼P1-03 (Inverter power>55kW)	Tuning parameter	*

P1-06~P1-10 are the parameters of the asynchronous motor. These parameters are generally not or the motor nameplate and need to be automatically tuned by the inverter. Among them, "asynchronou motor static tuning" can only obtain three parameters P1-06~P1-08, and "integrated tuning o asynchronous motor" can obtain encoder phase sequence and current loop PI in addition to all five parameters here. Parameters, etc.

When changing the rated motor power (P1-01) or the rated motor voltage (P1-02), the inverter wil automatically modify the P1-06~P1-10 parameter values and restore these 5 parameters to the common standard Y series motor parameters.

If the asynchronous motor cannot be tuned at the site, you can enter the corresponding function cod according to the parameters provided by the motor manufacturer.


		0: no operation		
		1: Asynchronous machine static tuning 1		
		2: Asynchronous machine dynamic tuning		
		3: Asynchronous machine static tuning 2		
P1-37	Tuning selection	In order to ensure the optimal control performance	0	*
		of the inverter during vector control, please		
		disconnect the load from the motor and use the		
		rotary tuning to self-learn the motor parameters,		
		otherwise the vector control effect will be affected.		

function	namo	Predetermined area	Factory	change
code	name	Predetermined area	default	change
		Use static tuning 2 when the motor has a large		
		inertia load that is not easily disengaged and vector		
		control is required.		
		The motor type and nameplate parameters		
		P1-00~P1-05 must be correctly set before the		
		parameters are self-learned.		
		Tuning action description: Set the motor nameplate		
		parameters and self-learning type, then press RUN		
		key, the inverter will perform static tuning.		
		0: No operation, ie tuning is prohibited.		
		1: Asynchronous machine static tuning 1, suitable		
		for asynchronous motors and where large inertia		
		loads are not easily disconnected and cannot be		
		rotated and tuned.		
		2: Asynchronous machine dynamic tuning		
		During the dynamic tuning process, the inverter		
		performs static tuning first, then accelerates to 80%		
		of the rated motor frequency according to the		
		acceleration time P0-17. After a period of time, the		
		inverter decelerates to stop according to the		
		deceleration time P0-18 and ends the tuning.		
		3: Asynchronous machine static tuning 2		
		Applicable to the case of no encoder, self-learning		
		of the motor parameters under the static state of		
		the motor (the motor may still have slight jitter at		
		this time, need to pay attention to safety)		
		Action description: Set the function code to 3, then		
		press RUN key, the inverter will perform no-load		
		tuning.		
		Note: Tuning supports motor tuning in keyboard		
		operation mode, terminal mode, and		
		communication mode.		
		P2 group First motor vector control parameter		
	Speed loo	qu		
P2-00	proportional ga	in 1 ~100	30	☆
2-00			00	м
	1			

function code	name	Predetermined area	Factory default	change
P2-01	Speed loop integration time 1	0.01s ~10.00s	0.50s	☆
P2-02	Switching frequency 1	0.00 ~P2-05	5.00Hz	\$
P2-03	Speed loop proportional gain 2		20	\$
P2-04	Speed loop integration time 2	0.01s ~10.00s	1.00s	\$
P2-05	Switching frequency 2	P2-02 ~Maximum frequency	10.00Hz	\$

JAC300 Series Inverter User Manual

When the inverter runs at different frequencies, different speed loop PI parameters can be selected. When the running frequency is less than the switching frequency 1 (P2-02), the speed loop PI adjustment parameters are P2-00 and P2-01. When the running frequency is greater than the switching frequency 2, the speed loop PI adjustment parameters are P2-03 and P3-04. Switching the speed loop PI parameter between frequency 1 and switching frequency 2, linearly switching between two sets of PI parameters, as shown in the figure below.

The speed dynamic response characteristic of the vector control can be adjusted by setting the spee factor and the integration time of the speed regulator.

function	name	Predetermined area	Factory	change
code	name	Fieueleimineu aiea	default	change
Increasi	ng the proportiona	al gain and reducing the integration time can s	peed up the	e dynami
respons	e of the speed loop	b. However, if the proportional gain is too large or the	e integration	time is to
small, th	e system can oscil	late. The recommended adjustment method is:		
If the fac	ctory parameters c	an not meet the requirements, then fine-tuning base	ed on the fac	ctory valu
-		the proportional gain to ensure that the system d		
	the integration time	e, so that the system has faster response charact	eristics, over	shoot an
smaller.				
Note: If t	the PI parameters a	are not set properly, it may cause the speed oversho	ot to be too la	arge. An
overvolta	age fault occurs ev	en when the overshoot falls back.		
		50%~200%		
		For speed sensorless vector control, this		
	Vector control	parameter is used to adjust the motor's steady		
P2-06	slip gain	speed accuracy: when the motor is loaded with a	100%	☆
		low speed, the parameter is increased, and vice		
		versa.		
		0.000s~0.100s		
		SVC The torque filter time constant is valid only		
		when P0-01=0. Increasing P2-07 can improve the		
P2-07	SVC torque filter	stability of the motor, but the dynamic response	0.050	
P2-07	time constant	It weakens, otherwise the dynamic response is	0.050s	☆
		strengthened, but too small will cause the motor to		
		oscillate. Under normal circumstances, no		

function code	name	Predetermined area	Factory default	change
P2-09	limit source in	0: Function code P2-10 setting 1: Al1 2: Al2 3: Al3 4: PULSE setting (DI5) 5: Communication given 6: MIN (Al1, Al2) 7: MAX (Al1, Al2) The full scale of the 1-7 option corresponds to P2-10	0	*
P2-10	Torque upper limit digital setting in speed control mode	0.0%~200.0%	150.0%	Å

In the speed control mode, the maximum value of the inverter output torque is controlled by the torqu upper limit source. P2-09 is used to select the setting source of the upper torque limit. When passing the analog quantity and communication setting, 100% of the corresponding setting corresponds to P2-10, and 100% of P2-10 is the rated torque of the inverter.

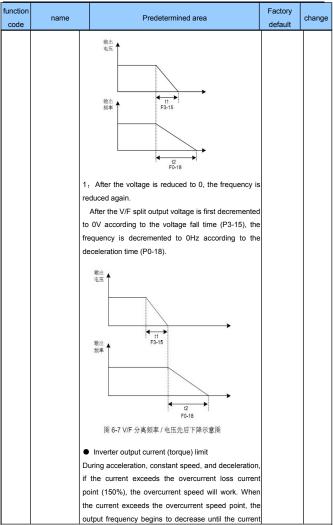
For the Al1 and Al2 settings, see the P4 group Al curve related introduction (select the respective curves through P4-33)

When the communication setting is selected, the host computer writes -100.00% to 100.00% of the data through the communication address 0x1000, of which 100.00% corresponds to P2-10.

P2-13	Excitation adjustment proportional gain	0 ~60000	2000	*
P2-14	Excitation adjustment integral gain	0 ~60000	1300	☆
P2-15	Torque adjustment proportional gain	0 ~60000	2000	\$
P2-16	Torque adjustment integral gain	0 ~60000	1300	☆

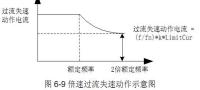
function code	name	Predetermined area	Factory default	change		
The vec	tor control current	loop PI adjustment parameter, which is automatic	ally obtaine	d after th		
asynchronous machine is dynamically tuned, generally does not need to be modified.						
Need to	Need to be reminded that the integral regulator of the current loop does not use the integration time at					
the dime	ension, but directly	sets the integral gain.	-			
		is set too large, it may cause the entire control loop	to oscillate	Therefore		
		n or torque fluctuation is large, the PI proportional g	ain or integra	ai gain ca		
be manu	ally reduced.					
		P3 V/F control parameter				
		0: Straight line V/F (suitable for normal constant				
		torque load)				
		1: Multi-point V/F (multi-point V/F. It is suitable for				
		special loads such as dehydrator, centrifuge, etc.				
		At this time, by setting P3-03~P3-08 parameters,				
		an arbitrary VF relationship curve can be obtained.)				
		2: square V/F (suitable for centrifugal loads such as				
		fans and pumps)				
		3:1.2 power V/F				
		4:1.4 power V/F				
		6:1.6 power V/F				
		8:1.8 power V/F				
		3~8: VF between straight line VF and square VF				
P3-00	VF Curve setting	Relationship lines	0	*		
		9: Reserved				
		10: VF complete separation mode (at this time, the				
		output frequency of the inverter is independent of				
		the output voltage, the output frequency is				
		determined by the frequency source, and the				
		output voltage is determined by P3-13 (VF				
		separation voltage source). Generally used in				
		induction heating, inverter Power, torque motor				
		control, etc.)				
		11: VF semi-separation mode (V is proportional to				
		F, but the proportional relationship can be set by				
		voltage source P3-13, and the relationship				
		between V and F is also related to the motor rated				

function	name	Predetermined area	Factory	change
code		voltage and rated frequency of group P1. Assume	default	
		voltage source input For X (X is 0~100% value).		
		the relationship between inverter output voltage V		
		and frequency F is: $V/F=2 * X *$ (motor rated		
		voltage) / (motor rated frequency))		
		0.0%: (automatic torque boost)	Model	
P3-01	Torque boost	0.1%~30.0%	determinati	\$
			on	
P3-02	Torque boost cutoff frequency	0.00Hz~Maximum frequency	50.00Hz	*
	In order to compe	ensate the V/F control low-frequency torque character	eristics, some	
	boost compensat	ion is applied to the inverter output voltage at low	frequencies	
	However, the torc	ue boost setting is too large, the motor is prone to	overheating	
	and the inverter is	prone to overcurrent.		
	It is recommende	ed to increase this parameter when the load is he	eavy and the	
	motor starting tor	que is insufficient. The torque boost can be reduc	ed when the	
	load is light.			
	When the torque I	boost is set to 0.0, the inverter is automatically torqu	e boosted. A	
	this time, the inv	verter automatically calculates the required torque	boost value	
	according to para	meters such as the stator resistance of the motor.		
	Torque boost tor	que cutoff frequency: Under this frequency, the	torque boos	
	torque is valid. If	the set frequency is exceeded, the torque boost w	vill be invalid	
	See the following	figure for details.		


function code	name	Predetermined area	Factory default	change
code	输出电压 Vb V1 V1:手动转 f1:手动转	f1 fb 输出频率 f4 fb 输出频率 f4 fb 输出频率 f4 fb 输出频率 f4 fb 输出频率 f5 输出频率 fb f5 标定运行频率 fb	Ucrauit	
P3-03	Multi-point VF frequency point 1	0.00Hz~P3-05	0.00Hz	*
P3-04	Multi-point VF voltage point 1	0.0%~100.0%	0.0%	*
P3-05	Multi-point VF frequency point 2	P3-03~P3-07	0.00Hz	*
P3-06	Multi-point VF voltage point 2	0.0%~100.0%	0.0%	*
P3-07	Multi-point VF frequency point 3	P3-05 ~ Motor rated frequency (P1-04)	0.00Hz	*
P3-08	Multi-point VF voltage point 3	0.0%~100.0%	0.0%	*
		, c parameters define a multi-segment V/F curve. F curve should be set according to the load charact	eristics of the	
		be noted that the relationship between the three v		
	and the frequency	v point must be satisfied: V1 < V2 < V3, P1 < P2 < F	3. The figure	
	below shows the setting of the multi-point VF curve.			
	Ū	et too high at low frequencies, the motor may over erter may over-speed or over-current protection	heat or ever	

function code	name	Predetermined area	Factory default	change
		F2 F3 Fb 频率% 开第1-3段电压百分比 ////////////////////////////////////		
P3-09	VF slip compensation gain	0.0% to 200.0% This parameter is valid only for asynchronous motors. VF slip compensation can compensate the motor speed deviation generated by the asynchronous motor when the load increases, so that the motor speed can be basically stabilized when the load changes. The VF slip compensation gain is set to 100.0%, which means that the motor's rated slip is the rated slip of the motor when the rated load is applied to the motor. The rated slip of the motor is calculated by the inverter's rated frequency and rated speed of the P1 motor. When adjusting the VF slip compensation gain, the motor speed is basically the same as the target speed under the rated load. When the motor speed is different from the target value, the gain needs to be fine-tuned appropriately.	0.0%	☆

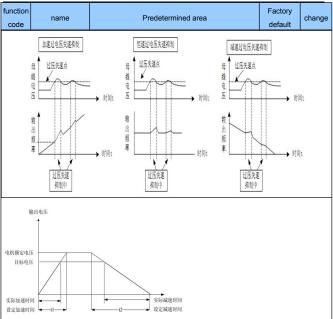
function code	name	Predetermined area	Factory default	change
P3-10	VF overexcitation gain	0 to 200 During the deceleration of the inverter, the overexcitation control can suppress the rise of the bus voltage and avoid overvoltage faults. The larger the overexcitation gain, the stronger the suppression effect. In the case where the inverter deceleration process is prone to overvoltage alarm, it is necessary to increase the overexcitation gain. However, if the overexcitation gain is too large, it will easily lead to an increase in the output current, which needs to be weighed in the application. For applications where the inertia is small, there is no voltage rise during motor deceleration. It is recommended to set the overexcitation gain to 0. For those with braking resistors, it is also recommended to set the overexcitation gain to 0.	64	Ŕ
P3-11	VF oscillation suppression gain	0 ~100 The selection method of the gain is as small as possible under the premise of effectively suppressing the oscillation, so as to avoid adversely affecting the operation of the VF. Select this gain to be 0 when there is no oscillation in the motor. It is only necessary to increase the gain appropriately when the motor oscillates significantly. The greater the gain, the more obvious the suppression of the oscillation. When using the suppression oscillation function, the motor rated current and no-load current parameters are required to be accurate, otherwise the VF oscillation suppression effect is not good.	Model determinati on	*


function			Factory	-	
code	name	Predetermined area	default	change	
		0: Digital setting (P3-14)			
		1: Al1			
		2: Al2			
		3: AI3			
		4: PULSE pulse setting (DI5)			
P3-13	VF separated voltage source	5: Multi-segment instructions	0	☆	
	voltage source	6: Simple PLC			
		7: PID			
		8: Communication given			
		Note: 100.0% corresponds to the rated voltage of			
		the motor			
	VF separation				
P3-14	voltage digital	0V ~ motor rated voltage	0V	☆	
	setting				
	VF separation is	generally used in applications such as induction hea	atina. inverte		
		torque motor control.	5, 11		
		ion control is selected, the output voltage can be se	et by functior		
	•	can be from analog quantity, multi-segment instruction			
	or communication	reference. When using non-digital setting, 100% of	each setting		
	corresponds to th	e rated voltage of the motor. When the percentage	of the outpu		
	setting such as a	nalog quantity is negative, the set absolute value is	used as the		
	effective setting va	alue.			
	0: The digital setti	ng (P3-14) voltage is set directly by P3-14.			
	1: Al1 2: Al2 3 : A	13			
	The voltage is det	ermined by the analog input terminal.			
	4, PULSE pulse g	iven			
	5, multiple instruct	tions			
	When the voltage	e source is a multi-segment command, the P4 gr	oup and PC		
	group parameters	s should be set to determine the correspondence	between the		
	given signal and	the given voltage. The PC group parameter n	nulti-segmen		
	command given 1	00.0% refers to the percentage of the rated motor vo	ltage.		
	6, simple PLC				
	When the voltage source is a simple PLC, you need to set the PC group				
	parameters to det	ermine the given output voltage.			
	7, PID				
	The output voltag	e is generated according to the PID closed loop. Fo	r details, see		

function	name	Predetermined area	Factory	change
code	name	Predetermined area	default	change
	the PA group intro	oduction.		
	8, communication	given		
	The voltage is giv	en by the host computer through communication.		
	The VF separation	on voltage source selection is similar to the frequ	ency source	
	selection. See PC	-03 Main Frequency Source Selection. Among them	, the 100.0%	
	of the various typ	pes of settings correspond to the rated voltage of the	e motor (the	
	corresponding se	tting is worth the absolute value).		
	VF separation	0.0s ~1000.0s		
P3-15	voltage	Note: indicates the time when 0V changes to the	0.0s	☆
	acceleration time	rated voltage of the motor.		
	VF separation	0.0s ~1000.0s		
P3-16	voltage	Note: indicates the time when 0V changes to the	0.0s	\$
	deceleration time	rated voltage of the motor.		
The volta	age acceleration til	me of VF separation refers to the time required for the	e output volta	ige to
accelera	te from 0 to the rat	ted voltage of the motor, see t1 in the figure.		
Thowalt	ago docoloration ti	me of VF separation refers to the time required for the		nao to
	age deceleration til			ige io
decelera	ite from the rated v	oltage of the motor to 0, see t2 in the figure.		
	0.	Frequency/voltage is independently reduced to 0		
	VF V/	F separated output voltage is reduced to 0	,	
P3-17	separation	cording to voltage fall time (P3-15);	0	☆
	stop mode V/	F Separate the output frequency and decrement it to	,	
	selection 0H	Iz according to the deceleration time (P0-18)		

function	name	Predetermined area	Factory	change
code	name	Tredetermined area	default	change
		returns to the overcurrent speed. After the point is below, the frequency starts to accelerate upward to the target frequency, and the actual acceleration time is automatically lengthened. If the actual acceleration time cannot meet the requirements, the "P1-21 over-running action current" can be appropriately increased.		
P3-18	Over-speed action current	50%~200% Start the current through the stall suppression action	150%	*
P3-19	Over-speed suppression	0: invalid1: effective	1	*
P3-20	Over-speed rejection gain	$0\sim\!100$ If the current exceeds the overcurrent loss current point, the overspeed suppression will work and the actual acceleration time will automatically lengthen.	20	Å
P3-21	Double speed overrun speed action current compensatio	50%~200% Reduce the high-speed over-current operating current, the compensation coefficient is invalid when 50, the field weakening current corresponds to P3-18	50%	*

function code	name	Predetermined area	Factory default	change			
	n coefficient						
In the h	high frequency	egion, the motor drive current is small, and the spe	ed of the m	otor drop			
greatly	with respect to	he same stall current below the rated frequency. In	n order to in	prove the			
operatin	g characteristic	of the motor, the stall operating current above the i	ated frequer	ncy can b			
reduced	duced, in some centrifuges. When the operating frequency is high, requiring several times of wea						
magneti	magnetic field and large load inertia, this method has a good effect on the acceleration performance						
Transitio	Transition stall current exceeding the rated frequency= (fs/fn) * k * LimitCur;						
fs: Running frequency, fn :Motor rated frequency, k: P3-21 "double speed over loss speed action							
current compensation coefficient", LimitCur :P3-18 "Overcurrent loss current"							


Remarks:

Over-current running current 150% means 1.5 times the rated current of the inverter;

For high-power motors, the carrier frequency is below 2 kHz. Due to the increase of the ripple current the wave-by-wave current-limit response starts before the over-speed prevention action, and the torque is insufficient. In this case, reduce the over-speed prevention operation current.

• Inverter bus voltage limit (and brake resistor turn-on voltage setting)

If the bus voltage exceeds the overvoltage stall point of 760V, indicating that the electromechanics system is already in the power generation state (motor speed > output frequency), the overvoltage stall will work, adjust the output frequency (consuming more feedback than the feedback), the actua deceleration time will be automatic Stretching, avoiding trip protection, if the actual deceleration time can not meet the requirements, you can increase the overexcitation gain appropriately.

P3-22	Overvoltage stall operating voltage	650.0V ~800.0V	760.0V	*
P3-23	Overvoltage stall enable	0: invalid 1: effective	1	*
P3-24	Overvoltage stall suppression frequency gain	0 ~100	30	Ŕ
P3-25	Overvoltage stall suppression	0 ~100	30	☆

JAC300 Series Inverter User Manual						
voltage gain						
Overvoltage stall						
maximum rising	0 ~50H	5Hz	*			
limit						
note when usir	ng a bral	king resistor or when installing a brake unit or	when using	an energ		
k unit:						
set P3-11 "ove	erexcitatio	on gain" value to "0". If it is not "0", it may	cause exces	sive currer		
peration.						
set P3-23 "O	vervoltag	ge stall enable "value to "0". If it is not	"0", it may	cause the		
ation time to pro	olong.					
		P4 group input terminal				
DI1 terminal f selection	function		1	*		
	function		4	*		
	function		9	*		
selection						
DI4 terminal f	function		12	*		
selection			.2			
DI5 terminal f	function		10			
selection			13	*		
DI6 terminal f	function					
selection			0	*		
DI7 terminal f	function					
selection			0	*		
	voltage gain Overvoltage stall maximum rising frequency limit set P3-11 "ove peration. set P3-23 "O ation time to pro- distribution of the selection D12 terminal fit selection D13 terminal fit selection D14 terminal fit selection D15 terminal fit selection D15 terminal fit selection D15 terminal fit selection D15 terminal fit selection D15 terminal fit selection D15 terminal fit selection	voltage gain Overvoltage stall maximum rising frequency limit note when using a brak k unit: set P3-11 "overexcitation peration. Set P3-11 "overexcitation peration. Set P3-23 "Overvoltage ation time to prolong. D11 terminal function selection D12 terminal function selection D13 terminal function selection D14 terminal function selection D15 terminal function selection D15 terminal function selection D16 terminal function selection D16 terminal function	voltage gain	voltage gain		

0: No function

1: Running FWD or running commands

2: Reverse running REV or forward and reverse running direction

(Note: When set to 1, 2, the inverter is controlled to rotate forward and reverse by external terminal. If needs to be used with P4-11. See function code parameter for details.)

3: Three-wire operation control (This terminal is used to determine the inverter operation mode is the three-wire control mode. For details, please refer to the description of function code P4-11 ("Termina Command Mode").)

4: Forward jog (FJOG)

5: Reverse jog (RJOG)

(FJOG is jog forward running, RJOG is jog reverse running. Jog running frequency, jog acceleration/deceleration time see description of function codes P8-00, P8-01, P8-02.)

6: Terminal UP

7: Terminal DOWN (The frequency is incremented or decremented when the frequency is given by the external terminal. When the frequency source is set to digital setting, the set frequency can be adjusted up and down.)

8: Free stop (The inverter blocks the output, and the motor stop process is not controlled by the inverter. This mode has the same meaning as the free stop described in P6-10).

9: Fault reset (RESET) (Failover function with terminal. It has the same function as the RESET button on the keyboard. This function can be used to reset the remote fault.)

10: Operation pause (The inverter decelerates to stop, but all operating parameters are memorized. Fo example, PLC parameters, swing frequency parameters, PID parameters. After this terminal signa disappears, the inverter returns to the operating state before stopping.)

 External fault normally open input (When this signal is sent to the inverter, the inverter reports faul ERR15 and performs fault processing according to the fault protection action mode (details participate in function code P9-47))

12: Multi-stage command terminal 1

13: Multi-stage command terminal 2

14: Multi-stage command terminal 3

15: Multi-stage command terminal 4

(The 16-segment speed or 16 other commands can be set by 16 states of these four terminals. See Table 1 for details.)

16: Acceleration/deceleration time selection terminal 1

17: Acceleration/deceleration time selection terminal 2

(The selection of 4 kinds of acceleration/deceleration time is realized by the four states of the two terminals. For details, see Attachment 2.)

18: Frequency source switching (used to switch to select different frequency sources. According to the frequency source selection function code (P0-07) setting, when setting between two kinds of frequency sources to switch between frequency sources, the terminal is used to achieve two Switching between frequency sources.)

19: UP/DOWN setting is cleared (terminal, keyboard)

(When the frequency is given as digital frequency, this terminal can clear the frequency value changed by terminal UP/DOWN or keyboard UP/DOWN, so that the given frequency returns to the value set by P0-08.) 20: Control command switching terminal 1

(When the command source is set to terminal control (P0-02=1), this terminal can switch between terminal control and keyboard control. When the command source is set to communication contro (P0-02=2), this terminal can communicate. Control and keyboard control switching.)

21: Acceleration/deceleration prohibition (Ensure that the inverter is not affected by external signals (except for the stop command) and maintain the current output frequency.) 22: PID pause (PID temporarily expires, the inverter maintains the current output frequency, and the PID adjustment of the frequency source is no longer performed.) 23: PLC State reset (The PLC is paused during execution. When it is run again, the inverter can be restored to the initia state of the simple PLC through this terminal.) 24: Swing frequency pause (the inverter outputs at the center frequency. The swing frequency function is suspended.) 25: Counter input (input terminal for counting pulses) 26: Counter reset (counter status is cleared) 27: Length count input (input terminal for length count) 28: Length reset (length cleared) 29: Torque control disabled (The inverter is prohibited from torque control, the inverter enters the speed control mode) 30; PULSE pulse setting (DI5) 31: Reserved 32: Immediate DC braking (When this terminal is active, the inverter directly switches to DC braking) 33. External fault normally closed input (When the external fault normally closed signal is sent to the inverter, the inverter reports fault ERR15 and stops.) 34: Frequency modification enable (If the function is set to active, the frequency converter does not respond to changes in frequency when the frequency changes until the terminal status is valid.) 35: The direction of the PID action is reversed (when the terminal is valid, the direction of the PID action is opposite to the direction set by PA-03) 36: External parking terminal 1 (This terminal can be used to stop the inverter when the keyboard is controlled, which is equivalent to the function of the STOP button on the keyboard) 37: Control command switching terminal 2 (Used for switching between terminal control and communication control. If the command source is selected as terminal control, the system switches to communication control when the terminal is valid. vice versa.)

38: PID integration pause

(When this terminal is valid, the PID integral adjustment function is suspended, but the PID proportiona adjustment and differential adjustment functions are still valid.)

 Frequency source X and preset frequency switching (This terminal is valid, frequency source X is replaced by preset frequency (P0-08))

40: Frequency source Y and preset frequency switching (This terminal is valid, frequency source X is replaced by preset frequency (P0-08))

41: Motor selection terminal 1

(Through the four states of these two terminals, 4 sets of motor parameters can be switched. For details, see Attachment 3.)

43: PID Parameter switching

(When the PID parameter switching condition is DI terminal (PA-18=1), when the terminal is invalid, the PID parameter uses PA-05 to PA-07; when the terminal is valid, PA-15 to PA-17 is used)

44: User-defined fault 1

45: User-defined fault 2

(When the user-defined faults 1 and 2 are valid, the inverter will alarm ERR27 and ERR28 respectively, and the inverter will select the action mode selected by P9-49 according to the fault protection action.)

46: Speed control / torque control switching

(The inverter is switched between torque control and speed control mode. When the terminal is invalid, the inverter runs in A0-00 (speed/torque control mode) definition mode, and when this termina is valid, it switches to another mode.)

47: emergency pull over

(When the terminal is valid, the inverter stops at the fastest speed, and the current is at the se current upper limit during the stop. This function is used to meet the requirement that the inverter needs to stop as soon as possible when the system is in an emergency.)

48:External parking terminal 2

(In any control mode (panel control, terminal control, communication control), this terminal can be used to decelerate the inverter, and the deceleration time is fixed at deceleration time 4.)

49: Deceleration DC braking

(When this terminal is valid, the inverter will first decelerate to the stop DC braking start frequency and then switch to DC braking state.)

50: This run time is cleared

When the terminal is valid, the timing of the inverter running this time is cleared. This function needs to be used together with the timing operation (P8-42) and the current running time arrival (P8-53).

51: Two-wire / three-wire switching

(Used to switch between 2-wire and 3-wire control. If P4-11 is 2-wire 1, switch to 3-wire 1 when the terminal function is active. And so on.)

52: Reverse rotation prohibited (This terminal is valid, the inverter is prohibited from being reversed. If has the same function as P8-13)

53-59 : Reserved

4 multi-segment command terminals can be combined into 16 states, and each of these 16 states corresponds to 16 command set values. Specifically as shown in the following table

K4	K3	K2	K1	Command	Correspond
				setting	ing
					parameter
OPF	OPF	OPF	OPF	Multi-segment	PC-00
				instruction 0	

JAC300 Series Inverter User Manual

OPF	OPF	OPF	ON	Multi-segment	PC-01
				instruction1	
OPF	OPF	ON	OPF	Multi-segment	PC-02
				instruction 2	
OPF	OPF	ON	ON	Multi-segment	PC-03
				instruction 3	
OPF	ON	OPF	OPF	Multi-segment	PC-04
				instruction 4	
OPF	ON	OPF	ON	Multi-segment	PC-05
				instruction 5	
OPF	ON	ON	OPF	Multi-segment	PC-06
				instruction 6	
OPF	ON	ON	ON	Multi-segment	PC-07
				instruction 7	
ON	OPF	OPF	OPF	Multi-segment	PC-08
				instruction 8	
ON	OPF	OPF	ON	Multi-segment	PC-09
				instruction 9	
ON	OPF	ON	OPF	Multi-segment	PC-10
				instruction 10	
ON	OPF	ON	ON	Multi-segment	PC-11
				instruction 11	
ON	ON	OPF	OPF	Multi-segment	PC-12
				instruction 12	
ON	ON	OPF	ON	Multi-segment	PC-
				instruction 13	3
ON	ON	ON	OPF	Multi-segment	PC-14
				instruction 14	
ON	ON	ON	ON	Multi-segment	PC-15
				instruction 15	

When the frequency source is selected to be multi-speed, 100.0% of the function code PC-00-PC-15 corresponds to the maximum frequency P0-10. In addition to the multi-speed function, the multi-segment command can also be used as a given source of PID or as a voltage source for VF separation control to meet the need to switch between different set values.

The following table shows the function of the acceleration acceleration time selection termina	The following table shows the function of the acceleration/deceleration time	selection terminal.
--	--	---------------------

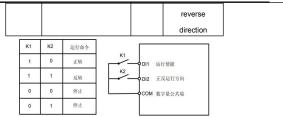
Termi	Termi	Acceleration or	Corresponding parameter
nal 2	nal 1	deceleration time	
		selection	
OPF	OPF	acceleration time 1	P0-17 、P0-18
OPF	ON	acceleration time 2	P8-03 、P8-04
ON	OPF	acceleration time 3	P8-05 、P8-06

571050	0 Series Inverter User Manual					
	ON	ON ON acceleration time 4 P8-07 、 P8-08				
The follo	owing table s	hows the	function description of the motor s	election termina	al.	_
	Termin	al 1	Acceleration or deceleration	Corres	ponding	
			time selection	para	meter	
	OPF	:	Motor 1	P1, P2	2 group	
	ON		Motor 2	A2 g	group	
		0.000	ls∼1.000s			
		Set t	ne software filter time for the DI ter	rminal status. If		
	DI Filterir	the i	nput terminal is susceptible to in	terference and		
P4-10	time	caus	e malfunction, the parameter can t	be increased to	0.010s	\$
		enha	enhance the anti-interference ability. However, this			
		incre	increase in filtering time causes the response of the DI			
		termi	nal to be slow.			
		0: T	wo-wire type 1			
		1: T	wo-line 2 2: Three-wire type 1			
		3: T	nree-wire type 2			
		This	parameter defines four different v	ways to control		
			the operation of the drive via external terminals.			
			For convenience of explanation			
			terminals DI1, DI2, and DI3 in the	e multi-function		
P4-11	端子命令		terminals of DI1 to DI10 are selec	0	*	
	式		nals. That is, the functions of the			â
			DI2, and DI3 are selected by settin	0		
		-) to P4-02. For the detailed fund			
			ne setting range of P4-00 to P4-09.			
			wo-wire mode 1: This mode is the			
			two-wire mode. The forward and rev	•		
			otor is determined by terminals DI1	and DI2.		
		The f	unction code is set as follows:			

This parameter defines four different ways to control the operation of the drive via external terminals. Note: For convenience of explanation, the following three terminals DI1, DI2, and DI3 in the multi-function input terminals of DI1 to DI10 are selected as external terminals.That is, the functions o the three terminals DI1, DI2, and DI3 are selected by setting the values of P4-00 to P4-02. For the detailed function definition, see the setting range of P4-00 to P4-09.

0: Two-wire mode 1: This mode is the most commonly used two-wire mode. The forward and reverse running of the motor is determined by terminals DI1 and DI2.

function	name	Set	Functional
code	hanc	value	description
P4-11	Terminal command side	0	Two-wire 1
P4-00	DI1 Terminal function selection	1	Forward running(FWD)
P4-01	DI2 Terminal function selection	2	Reverse running(REV)


The function	code is s	set as fol	lows:

K1	K2	运行命令	
1	0	正转	K1 ODI1 正转运行(FWD)
0	1	反转	K2 DI2 反转运行(REV)
1	1	停止	COM 数字量公共端
0	0	停止	

As shown in the figure above, in this control mode, K1 is closed and the inverter is running forward. K2 is closed and reversed. K1 and K2 are closed or disconnected at the same time, and the inverter stops running.

1: Two-wire mode2: In this mode, the DI1 terminal function is the operation enable terminal, and the DI2 terminal function determines the running direction. The function code is set as follows:

functi	on	name	Set	Functional
code	Э		value	description
P4-1	1	Terminal command mode	1	Two-wire2
P4-0	0	DI1 Terminal function	1	Run enabled
		selection		
P4-0	1	DI2 Terminal function	2	Forward
		selection		direction and

As shown in the figure above, in the closed state of K1, K2 disconnects the inverter from forward rotation, K2 closes the inverter reverse rotation; K1 disconnects and the inverter stops running.

2: Three-wire control mode 1: This mode DI3 is the enable terminal, and the direction is controlled by DI1 and DI2 respectively.

The function code is set as follows:

function	name	Set	Functional	
code		value	description	
P4-11	Terminal command	2	Three-wire type 1	
	mode			
P4-00	DI1 Terminal function	1	Forward	
	selection		running(FWD)	
P4-01	DI2 Terminal function 2 Reverse		Reverse	
	selection		running(REV)	
P4-02	DI3 Terminal function	3	Three-wire operation	
	selection		control	
正转按册 SB2 , DI1 停止按册 SB1 , DI3 反转按册 SB3 , DI2 COM			(FWD) : (REV)	

As shown in the figure above, in the control mode, when the SB1 button is closed, press the SB2 buttor to turn the inverter forward. Press the SB3 button to reverse the inverter. When the SB1 button is turned off, the inverter stops.During normal start-up and operation, it is necessary to keep the SB1 button closed. The commands of the SB2 and SB3 buttons are valid at the end of the closing action The running status of the inverter is based on the last button action of the three buttons.

3: Three-wire control mode 2: The DI3 of this mode is the enable terminal, the run command is giver by DI1, and the direction is determined by the state of DI2.

ue	ie is set as ioliows.									
	function	name	Set	Functional						
	code		value	description						
	P4-11	Terminal command	3	Three-wire 2						
		mode								
	P4-00	DI1 Terminal function	1	Run enabled						
		selection								
	P4-01	DI2 Terminal function	2	Forward direction						
		selection		and reverse direction						
	P4-02	DI3 Terminal function	3	Three-wire operation						
		selection		control						
正转接图 582 D11 正转运行(FWD) 停止接图 581 D13 运行使能 反转接图 583 D12 反转运行(REV) CCM 数字最会线端										

The function code is set as follows:

As shown in the figure above, in the control mode, when the SB1 button is closed, press the SB2 buttor to run the inverter, K disconnects the inverter from forward rotation, K closes the inverter, and the inverter stops when the SB1 button is disconnected. During normal start-up and operation, the SB1 button must be closed and the SB2 button command will take effect at the end of the closing action.

		0.001Hz/s ~65.535Hz/s		
		Used to set the terminal UP/DOWN to adjust the set		
	Terminal	frequency, the speed of the frequency change, that is,		
P4-12	UP/DOWN	the amount of change per second.	1.00Hz/s	
P4-12	Rate of	When P0-22 (frequency point) is 2, the value ranges	1.00HZ/S	☆
	change	from 0.001 Hz/s to 65.535 Hz/s.		
	onungo	When P0-22 (frequency point) is 1, the value ranges		
		from 0.01 Hz/s to 655.35 Hz/s.		
	AI curve 1			
P4-13	minimum	0.00V ~P4-15	0.00V	☆
	input			
	Al curve 1			
	minimum			
P4-14	input	-100.0% ~+100.0%	0.0%	☆
	correspondin			
	g setting			
	Al curve 1			
P4-15	maximum	P4-13 ~+10.00V	10.00V	☆
	input			
	Al curve 1			
	maximum			
P4-16	input	-100.0% ~+100.0%	100.0%	☆
	correspondin			
	g setting			
	Al1 filtering			
P4-17	time	0.00s ~10.00s	0.10s	☆
	•			

The above function code is used to set the relationship between the analog input voltage and the se value it represents.

When the voltage of the analog input is greater than the set "maximum input" (P4-15), the analog voltage is calculated according to the "maximum input"; similarly, when the analog input voltage is less than the set "minimum input" (For P4-13), it is calculated with the minimum input or 0.0% according to the setting of "Al below minimum input setting selection" (P4-34).

When the analog input voltage is greater than the set "maximum input" (P4 - when the analog input is current input, 1mA current is equivalent to 0.5V voltage.

Al1 input filter time, used to set the software filter time of Al1. When the on-site analog quantity is easily interfered, please increase the filter time so that the detected analog quantity tends to be stable, but the larger the filter time is, the analog quantity detection is. The response speed is slower, and how to set if up needs to be weighed according to the actual application.

In different applications, the meaning of the nominal value corresponding to 100.0% of the analog							
setting is different. For details, please refer to the description of each application part.							
The following illustrations are for two typical settings:							
	对应设定 (频率,转矩) (100.0%						
100.0% 0V(0mA) 0V(0mA) 0V(0mA) 10V(20mA) AI -100.0%							
P4-18	AI curve 2 minimum input	0.00V ~P4-20	0.00V	Å			
P4-19	AI curve 2 minimum input correspondin g setting	-100.0% ~+100.0%	0.0%	*			
P4-20	Al curve 2 maximum input	P4-18 ~+10.00V	10.00V	쟈			
P4-21	AI curve 2 maximum input correspondin g setting	-100.0% ~+100.0%	100.0%	\$			
P4-22	AI2 filtering time	λ I2 filtering 0.00s ~10.00s					
P4-23	AI curve 3 minimum input	-10.00V ~P4-25	-10.00V	*			
P4-24	AI curve 3 minimum input correspondin g setting	-100.0% ~+100.0%	0.0%	*			
P4-25	AI curve 3 maximum input	P4-23 ~+10.00V	10.00V	☆			

P4-26	AI curv maximu input correspo g setting	m ondin	-100.0% ~+100.0%	100.0%	\$
P4-27	AI3 filtering		0.00s ~10.00s	0.10s	☆
P4-28	8 PULSE curve 3 minimum input		-10.00V ~P4-25	0.00V	☆
P4-29	PULSE curve 3 minimum		-100.0% ~+100.0%	0.0%	\$
P4-30	30 PULSE curve 3 maximum input		P4-23 ~+10.00V	10.00V	Å
P4-31	PULSE curve 3 maximum input correspondin g setting		-100.0% ~+100.0%	100.0%	☆
P4-32	PULSE		0.00s ~10.00s	0.10s	☆
P4-33 AI Curve selection				321	\$
	Single digit		Al1 Curve selection		
	1	cur	ve1 (2 points, see P4-13 ~ P4-16)		
	2		ve2(2 points, see P4-18 ~ P4-21)		
	3 cur		ve3 (2 points, see P4-23 ~ P4-6)		

	4	curve4 (4 points, see A6-00 ~ A6-07)
	5	curve5 (4 Point, see A6-08 ~ A6-15)
		Al2 Curve selection (1 \sim 5, Same
	Ten digit	above)
	Hundred	Al3 Curve selection $(1 \sim 5, Same$
	s digit	above)

The ones digit of the function code, ten digits and hundred digits are used to select, the analog input Al1, Al2, Al3 corresponding setting curve. Each of the analog inputs can be selected from any of the five curves.

Curve 1, curve 2, and curve 3 are both 2-point curves, which are set in the P4 group function code, and curve 4 and curve 5 are both 4-point curves, which need to be set in the A6 group function code.

The standard unit of JAC300 inverter provides 2 analog input ports, and Al3 is used as keyboard potentiometer.

			Single	Al1 is below the minimum			
			digit	input setting selection			
				Corresponding to the			
			0	minimum input setting			
			1	0.0%			
			_	AI2 is lower than the minimum			
			Ten	input setting selection (0 to 1,			
	AI 低于最小		digit	as above)			
P4-34	输入设定选		Hundr	AI3 is lower than the minimum		000	\$
	择		eds	input setting selection (0 to 1,			
			digit	as above)			
		Th	is function c	ode is used to set, when the voltag	e of		
		the	e analog inpu	ut is less than the set "minimum inp	ut",		
		ho	w the setting	g corresponding to the analog quanti	ty is		
		de	termined.				
		Th	ie ones, ten	s, and hundreds of the function co	des		
		со	correspond to the analog inputs Al1, Al2, and Al3		AI3,		
		re	spectively.				

			If 0 is selected, when the AI input is lower than the "minimum input", the corresponding setting of the		
			analog quantity is the curve " minimum input		
			corresponding setting " determined by the function		
			code (P4-14, P4-19, P4-24).		
			If the selection is 1, the analog input is set to 0.0%		
			when the AI input is lower than the minimum input.		
P4-35	DI1	delay	0.05 ~3600.05	0.0s	*
F4-35	time		0.05 - 5000.05	0.05	*
P4-36	DI2 time	delay	0.0s ~3600.0s	0.0s	*
P4-37	DI3	delay	0.0s ∼3600.0s	0.0s	
P4-37	time		0.08 ~ 3000.08	0.05	*
It is use	d to set	the dela	ay time for the inverter to change the state of the DI term	inal.	
At present, only DI1, DI2, and DI3 have the function of setting the delay time.					
			0: Active high		

		0: Active high			l
		1: Active low			l
	DI Terminal	Single digit: DI1			
P4-38	valid mode	Ten digits: DI2	00000	*	
	selection 1	Hundreds digit: DI3			
		Thousand digits: DI4			
		Ten thousand digits: DI5			
	DI terminal	0: Active high			
		1: Active low			
P4-39	valid mode	Single digit: DI6	00000	*	
	selection 2	Ten digits: DI7			I

Used to set the active status mode of the digital input terminal.

When the selection is active high, the corresponding DI terminal is valid when connected to COM, and the disconnection is invalid.

When the selection is active low, the corresponding DI terminal is invalid when connected to COM, and the disconnection is valid.

	P5 group output terminal				
P5-01	DO output function selection	0	*		
P5-02	Control board relay function selection(RO1A-RO1	2	☆		

	B-RO1C)		
	Extended relay		
P5-03	function selection	0	\$
	(RO2A-RO2B-RO2C)		

0: no output

 When the inverter is running (The inverter is running, there is output frequency (can be zero), and the ON signal is output at this time.)

2: Fault output (failure for free stop) When the inverter fails and the fault stops, the ON signal is output.

- 3: Frequency level detection PDT1 output Refer to the description of function codes P8-19 and P8-20.
- 4: Frequency arrival Please refer to the description of function code P8-21
- 5: Zero speed operation (not output when stopped)

When the inverter runs and the output frequency is 0, the ON signal is output. This signal is OPF when the drive is in the stop state.

6: Motor overload pre-alarm

Before the motor overload protection action, it is judged according to the threshold value of the overload pre-alarm, and the ON signal is output after the pre-alarm threshold is exceeded. For motor overload parameter setting, see function code P9-00 ~ P9-02.

 Inverter overload pre-alarm 10 seconds before the inverter overload protection occurs, the ON signal is output.

 Set the value to arrive When the count value reaches the value set by PB-08, the ON signal is output.

9: Specify the value to arrive

When the count value reaches the value set by PB-09, the ON signal is output. Counting function reference PB group function description

10: Length reached When the actual length detected exceeds the length set by PB-05, the ON signa is output.

 PLC cycle completion When the simple PLC runs one cycle, it outputs a pulse signal with a width o 250ms.

12: Accumulated running time arrival When the accumulated running time of the inverter exceeds the time set by P8-17, the ON signal is output.

13: Frequency limit

When the set frequency exceeds the upper limit frequency or the lower limit frequency, and the inverter output frequency also reaches the upper limit frequency or the lower limit frequency, the ON signal is output.

14: Torque limit

When the inverter is in the speed control mode, when the output torque reaches the torque limit value, the inverter is in the stall protection state and outputs the ON signal.

15: Ready to run
When the main circuit of the inverter and the control loop power supply have been stabilized, and
the inverter does not detect any fault information, the inverter outputs the ON signal when it is in the
operable state.
16: AI1>AI2 When the value of analog input AI1 is greater than the input value of AI2, the ON signa
is output.
17: Upper limit frequency arrival When the running frequency reaches the upper limit frequency, ar
ON signal is output.
18: Lower limit frequency arrival (operation related)
When the running frequency reaches the lower limit frequency, the ON signal is output. This signa
is OPF in the stop state.
19: Undervoltage status output When the inverter is under voltage, it outputs an ON signal.
20: Communication setting
21: Positioning completed (reserved)
22: Positioning close (reserved)
23: 2 at zero speed (also output when stopped)
When the inverter output frequency is 0, the ON signal is output. This signal is also ON in the stop
state.
24: Cumulative power-on time arrives
When the cumulative power-on time (P7-13) of the inverter exceeds the time set by P8-16, the ON
signal is output.
25: Frequency level detection PDT2 output
Please refer to the description of function code P8-28, P8-29
26 : Frequency 1 reaches the output Please refer to the description of function codes P8-30 and
P8-31.
27: Frequency 2 reaches the output Please refer to the description of function codes P8-32 and
P8-33.
28: Current 1 reaches the output Please refer to the description of function codes P8-38 and P8-39.
29: Current 2 reaches the output Please refer to the description of function codes P8-40 and P8-41.
30: Timing arrival output
When the timing function selection (P8-42) is valid, the inverter will output the ON signal after the
running time reaches the set timing time.
31: Al1 Input overrun
When the value of analog input Al1 is greater than P8-46 (Al1 input protection upper limit) or less
than P8-45 (Al1 input protection lower limit), the ON signal is output.
32: Dropped When the inverter is in the off state, it outputs an ON signal.
33. Reverse running When the inverter is in reverse operation, it outputs ON signal.
34: Zero current state Please refer to the description of function code P8-28, P8-29
35: Module temperature reached
When the inverter module heatsink temperature (P7-07) reaches the set module temperature arriva
value (P8-47), the output ON signal
36: Output current overrun Please refer to the description of function code P8-36, P8-37

37: Lower limit frequency arrival (stop output also)

When the running frequency reaches the lower limit frequency, the ON signal is output. This signa is also ON during the stop state.

38: Alarm output (all faults)

When the inverter fails and the processing mode of the fault is continuous operation, the inverte alarm output.

39: Motor over temperature pre-alarm

When the motor temperature reaches P9-58 (motor overheat pre-alarm threshold), the ON signal is output. (Motor temperature can be viewed through U0-34)

40: When the running time arrives When the inverter starts running for longer than the time set by P8-53, the ON signal is output.

P5-07 A01 Output function selection 0: Operating frequency 1. Setting frequency 0 Note output current 0 Note A01 Output function 2: Output current 3: Motor output torque (absolute value, relative to the motor) 0 ** 4: Output Power 4: Output Power 1			lee otop laak and andorronage not oatput)		
AO1 Output 2: Output current 0 ☆ P5-07 function selection 2: Output current 0 ☆ 4: Output Power 4: Output voltage 0 ☆ 5: The output voltage 6: PLUSE Pulse given 1 ↓ 7: Al1 8: Al2 9: Al3 10: length 1 ↓ AO2 Output 11: Value 11: Value 1 ↓ ↓ ↓ ↓ P5-08 function 12: Communication setting 1 ↓<			0. Operating frequency		
P5-07 function selection 2: Output current motor 0 ☆ 4: Output Power		AO1 Output	1: Setting frequency		
Selection 3: Motor output torque (absolute value, relative to the motor) 4: Output Power 4: Output Power 5: The output voltage 6: PLUSE Pulse given 7: Al1 8: Al2 9: Al3 10: length 10: length 1 AO2 Output 11: Value 1 Function 12: Communication setting 1 selection 13: Motor speed 1 14: Output torque (actual value, relative to the motor) 16: Motor output torque (actual value, relative to the motor) 15: Output voltage (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 7: Inverter output torque (actual value, relative to the motor) P5-10 offset -100.0% ~+100.0% 0.0% \$ P5-11 AO1 Gain -100.0% ~+100.0% 1.00 \$ P5-12 offset -100.0% ~+100.0% 0.0% \$	P5-07		2: Output current	0	\$7
motor) motor) 4: Output Power			3: Motor output torque (absolute value, relative to the		~
A01 Zero P5-11 A01 Zero P5-12 A02 Zero		5010011011	motor)		
AO1 Zero P5-11 AO1 Zero P5-12 Offset -100.0% ~+100.0% .0.0% ☆			4: Output Power		
P5-08 AO1 Zero officient AO1 Zero bit 10.0% ~+100.0% 10.0%			5: The output voltage		
A02 Output 10: length 10: length 11: Value P5-08 function 12: Communication setting 1 1 selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 1 15: Output voltage (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) 0.0.0% \$\pm\$ P5-10 offset -100.0% ~+100.0% 0.0.0% \$\pm\$ P5-11 AO1 Zero coefficient -100.0% ~+100.0% 0.0.0% \$\pm\$ P5-11 AO1 Gain -100.0% ~+100.0% 0.0.0% \$\pm\$ P5-12 offset -100.0% ~+100.0% 0.0.0% \$\pm\$			6: PLUSE Pulse given		
P5-08 A02 Output 10: length 11: Value 11: Value P5-08 function 12: Communication setting 11 11: Value 11: Value Selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) P5-10 AO1 Zero 0.00% ~+100.0% 0.00% ☆ P5-11 AO1 Gain -100.0% ~+10.00 1.00 ☆ P5-12 offset -100.0% ~+100.0% 0.0% ☆			7: Al1		
P5-08 AO2 Output 10: length 11: Value 11: Value P5-08 function 13: Motor speed 11: Value 11: Value 11: Value selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) 10: 0.0% ~+100.0% 0.0% ☆ P5-10 offset coefficient -100.0% ~+100.0% 0.0% ☆ ☆ P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ P5-12 offset offset -100.0% ~+100.0% 0.0% ☆			8: AI2		
A02 Output 11: Value 1 * P5-08 function 12: Communication setting 1 * selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) • P5-10 offset coefficient -100.0% ~+100.0% 0.0% * P5-11 AO1 Gain -10.00 ~+10.00 1.00 * P5-12 offset -100.0% ~+100.0% 0.0% *			9: AI3		
P5-08 function 12: Communication setting 1 ☆ selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) 100.0% ~+100.0% 0.0% ☆ P5-10 offset coefficient -100.0% ~+100.0% 0.0% ☆ ☆ P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ P5-12 offset -100.0% ~+100.0% 0.0% ☆			10: length		
selection 13: Motor speed 14: Output current (100.0% corresponds to 1000.0A) 15: Output voltage (100.0% corresponds to 1000.0V) 16: Motor output torque (actual value, relative to the motor) 17: Inverter output torque (actual value, relative to the frequency converter) P5-10 offset coefficient P5-11 AO1 Zero coefficient P5-12 offset - 100.0% ~+100.0% AO2 Zero -100.0% ~+100.0% P5-12 offset - 100.0% ~+100.0%		AO2 Output	11: Value		
A01 Zero P5-10 A01 Zero A01 Zero P5-11 A01 Gain -10.00 ~+10.00 A02 Zero P5-12 offset -100.0% ~+100.0%	P5-08	function	12: Communication setting	1	☆
AO1 Zero P5-10 AO1 Gain AO1 Gain -10.00 ~+10.00 P5-12 offset - -100.0% ~+100.0% Sector -0.00 ~+10.00 AO2 Zero -100.0% ~+100.0% Offset -100.0% ~+100.0%		selection	13: Motor speed		
$\begin{array}{c c c c c c c c c } & 16: \mbox{ Motor output torque (actual value, relative to the motor)} & 16: \mbox{ Motor output torque (actual value, relative to the motor)} & 17: \mbox{ Inverter output torque (actual value, relative to the frequency converter)} & & & & & & & & & & & & & & & & & & &$			14: Output current (100.0% corresponds to 1000.0A)		
Motor) motor) 17: Inverter output torque (actual value, relative to the frequency converter) Image: Constant of the frequency converter Image: Constant of			15: Output voltage (100.0% corresponds to 1000.0V)		
AO1 Zero coefficient 100.0% ~+100.0% 100.0% \$			16: Motor output torque (actual value, relative to the		
AO1 Zero offset -100.0% ~+100.0% 0.0% ☆ P5-10 AO1 Gain -10.00 ~+100.0% 1.00 ☆ P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ P5-12 offset -10.0% ~+100.0% 1.00 ☆			motor)		
AO1 Zero offset coefficient -100.0% ~+100.0% 0.0% ☆ P5-10 AO1 Gain -10.00 ~+100.0% 1.00 ☆ P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ P5-12 offset -100.0% ~+100.0% 0.0% ☆			17: Inverter output torque (actual value, relative to the		
P5-10 offset coefficient -100.0% ~+100.0% 0.0% ☆ P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ AO2 Zero offset -100.0% ~+100.0% 0.0% ☆			frequency converter)		
coefficient		AO1 Zero			
P5-11 AO1 Gain -10.00 ~+10.00 1.00 ☆ AO2 Zero	P5-10	offset	-100.0% ~+100.0%	0.0%	☆
AO2 Zero P5-12 offset -100.0% ~+100.0% 0.0% ☆		coefficient			
P5-12 offset -100.0% ~+100.0% 0.0% ☆	P5-11	AO1 Gain	-10.00 ~+10.00	1.00	☆
		AO2 Zero			
coefficient	P5-12	offset	-100.0% ~+100.0%	0.0%	☆
		coefficient			

41: Fault output (for free stop fault and undervoltage not output)

P5-13 AO2 Gain -10.00 +10.00 ± The above function codes are generally used to correct the zero drift of the analog output and the deviation of the output amplitude. It can also be used to customize the required AO output curve. If the zero offset is indicated by "b", the gain is represented by k, the actual output is Y=kX + b. Among them, the zero offset coefficient of AO1 and AO2 corresponds to 10V (or 20mA), and the standard output refers to the output of 0V~10V (or 0mA~20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is 0, and 0, a	0.1000	5 Series IIIV				
deviation of the output amplitude. It can also be used to customize the required AO output curve. If the zero offset is indicated by "b", the gain is represented by k, the actual output is represented by Y and the standard output is represented by X, the actual output is Y=KX + b. Among them, the zero offset coefficient of AO1 and AO2 corresponds to 10V (or 20mA), and the standard output refers to the output of 0V-10V (or 0mA-20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". P5-17 DO Output delay time RELAY1 P5-18 Output delay time RELAY2 P5-19 Output delay time DO Output terminal valid state selection P6-00 Startup P6-00 P6-01 Speed P6-02 Speed P6-02 Speed 1 ~100 20 *	P5-13	AO2 Gain	-10.00 ~+10.00	1.00	☆	
If the zero offset is indicated by "b", the gain is represented by k, the actual output is represented by Y and the standard output is represented by X, the actual output is Y=kX + b. Among them, the zero offset coefficient of AO1 and AO2 corresponds to 10V (or 20mA), and the standard output refers to the output of 0V-10V (or 0mA-20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-050" and the zero offset should be set to "80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s \$\p\$ P5-18 Output delay 0.0s ~3600.0s 0.0s \$\p\$ P5-19 RELAY1 0.0s ~3600.0s 0.0s \$\p\$ P5-19 Output delay time 0.0s ~3600.0s 0.0s \$\p\$ P5-19 DO output time 0.9 ~3600.0s 0.0s \$\p\$ P5-21 DO Output time 0.9 ~3600.0s 0.0s \$\p\$ P5-19 RELAY1 0.9 ~3600.0s 0.0s \$\p\$ P5-20 DO Output time 0 \$\p\$ ~3600.0s 0.0s \$\p\$ P5-21 DO Output time 0 \$\p\$ ~3600.0s 0.0s \$\p\$<	The abo	The above function codes are generally used to correct the zero drift of the analog output and the				
and the standard output is represented by X, the actual output is : Y=kX +b. Among them, the zero offset coefficient of AO1 and AO2 corresponds to 10V (or 20mA), and the standard output refers to the output of 0V-10V (or 0mA-20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". DO Output delay time RELAY1 P5-18 Output delay time DO Output terminal valid state selection P6-00 Startup P6-00 Speed P6-02 Speed P6-02 Speed 1 ~ 100 20 \pm	deviatio	deviation of the output amplitude. It can also be used to customize the required AO output curve.				
Among them, the zero offset coefficient of AO1 and AO2 corresponds to 10V (or 20mA), and the standard output refers to the output of 0V~10V (or 0mA~20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-18 Output delay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-19 Output delay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-19 Output delay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-19 Output delay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-22 DO Output telay time 0.0s ~3600.0s 0.0s \$\pm\$ P5-21 DO Output telay terminal valid state selection 0.0s ~3600.0s 0.0s \$\pm\$ P5-22 DO Output telay terminal valid state selection 0.0s ~3600.0s 0.0s \$\pm\$ P5-22 DO Output telay terminal valid state selection 0.1s Postitive logic 1: RELAY1 0.0s \$\pm\$ P6-00 Startup mode<	If the ze	ero offset is indi	cated by "b", the gain is represented by k, the actual out	put is represe	ented by Y	
standard output refers to the output of 0V~10V (or 0mA~20mA) corresponding to the analog output without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s \$\proptom 0.0s \$\proptom 10000 \$\proptom 0.0s \$\proptom 10000 \$\proptom 100000 \$\proptom 1000000 \$\proptom 100000 \$\proptom 1000000 \$\proptom 100000 \$\proptom 1000000 \$\proptom 100000 \$\proptom 1000000 \$\proptom 1000000 \$\proptom 100000 \$\proptom 1000000 \$\proptom 100	and the	standard outpu	it is represented by X, the actual output is .: Y=kX $+b_{\circ}$			
without zero offset and gain correction. For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay time 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-22 DO Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-22 DO Output delay 0.0s ~3600.0s 0.0s ☆ P6-00 Starting redigits: RELAY1	Among	them, the zero	offset coefficient of AO1 and AO2 corresponds to 10V (or	r 20mA), and	the	
For example, if the analog output is the running frequency, it is desirable to output 8V when the frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to "-0.50" and the zero offset should be set to "80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s \$\phi\$ P5-18 Output delay time 0.0s ~3600.0s 0.0s \$\phi\$ P5-19 Output delay time 0.0s ~3600.0s 0.0s \$\phi\$ P5-20 DO Output time 0.0s ~3600.0s 0.0s \$\phi\$ P5-21 Output delay time 0.0s ~3600.0s 0.0s \$\phi\$ P5-22 DO Output time 0.0s ~3600.0s 0.0s \$\phi\$ P5-22 DO Output terminal valid state selection 0.0s reverse logic 0.0s \$\phi\$ Sigle digit: DO Ten digits: RELAY1 Hundreds digits: RELAY1 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to estab	standar	d output refers t	to the output of 0V~10V (or 0mA~20mA) corresponding to	o the analog	output	
frequency is 0, and output 3V when the frequency is the maximum frequency, then the gain should be set to *0.50" and the zero offset should be set to *80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay time 0.0s ~3600.0s 0.0s ☆ ☆ P5-18 Output delay time 0.0s ~3600.0s 0.0s ☆ ☆ P5-18 Output delay time 0.0s ~3600.0s 0.0s ☆ ☆ P5-19 Output delay time 0.0s ~3600.0s 0.0s ☆ ☆ P5-19 Output delay time 0.s ~3600.0s 0.0s ☆ ☆ P5-19 Output delay time 0.s ~3600.0s 0.0s ☆ ☆ P5-19 Output terminal valid state selection 0.s ~3600.0s 0.0s ☆ ☆ P5-22 DO Output valid state selection 0. Positive logic 1. 1. Reverse logic Single digit: DO Ten digits: RELAY1 0.00000 ☆ P6-00 Startup mode 0. Direct start 1. Speed tracking restart 2. Pre-excitation start (AC asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 <t< td=""><td>without</td><td>zero offset and</td><td>gain correction.</td><td></td><td></td></t<>	without	zero offset and	gain correction.			
set to *-0.50" and the zero offset should be set to *80%". P5-17 DO Output delay time 0.0s ~3600.0s 0.0s ☆ RELAY1 Output delay 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.s ~3600.0s 0.0s ☆ P5-19 Output delay 0.s ~3600.0s 0.0s ☆ P5-22 DO Output terminal valid state selection 0. Positive logic 0.0s ☆ P5-22 DO Output valid state 0. Positive logic 000000 ☆ P5-22 DO Output valid state 0. Positive logic 000000 ☆ P6-00 Startup mode 0. Direct start 0. Direct start 1. Speed tracking restart 2. Pre-excitation start (AC asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 0 ★ P6-01 Speed	For exa	mple, if the ana	log output is the running frequency, it is desirable to outp	ut 8V when t	he	
P5-17 DO Output delay time 0.0s ~3600.0s 0.0s ☆ RELAY1 Output delay 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.s ~3600.0s 0.0s ☆ P5-19 Output terminal valid state selection 0. Positive logic 1. Reverse logic Single digit: DO Ten digits: RELAY1 Hundreds digits: RELAY2 000000 ☆ P6-00 Startup mode 0. Direct start 1. Speed tracking restart 2: Pre-excitation start (AC asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 P6-01 Speed tracking method 0. Starting from the stop frequency 2: Starting from the maximum frequency 3: Speed. 0 ★	frequen	cy is 0, and out	put 3V when the frequency is the maximum frequency, th	en the gain s	hould be	
P5-17 delay time 0.0s ~3600.0s 0.0s ☆ RELAY1 Output delay 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 DO Output terminal valid state 0. Positive logic 0.0s ☆ P5-22 DO Output valid state 0. Positive logic 000000 ☆ Valid state 0. Direct start 0. Direct start 0. Direct start 0. Direct start 0. Pre-excitation start (AC asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 ☆ P6-01 Speed 0. Starting from the power frequency 2. Starting from the maximum frequency 0 ★ P6-02 Speed 1 ~100 20 ☆ ☆	set to	"-0.50" and th	ne zero offset should be set to "80%".			
RELAY1 Output delay 0.0s ~3600.0s 0.0s ☆ P5-18 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-19 Output delay 0.0s ~3600.0s 0.0s ☆ P5-22 DO Output terminal valid state 0. Positive logic 0.0s ☆ P5-22 DO Output valid state 0. Positive logic 000000 ☆ P5-22 Speed 0. Direct start 1. Speed tracking restart 2. Pre-excitation start (AC asynchronous motors, used to ostatibish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0. Starting from the power frequency 0 ★ P6-01 Speed	P5-17		0.0s ~3600.0s	0.0s	☆	
P5-18 Output delay 0.0s ~3600.0s 0.0s \$						
time Image: speed of tracking method 0.0 1 ~100 0.0 1 ~100	P5-18		0.0s ∼3600.0s	0.0s	\$	
P5-19 RELAY2 0.0s ~3600.0s 0.0s \$\phi\$ P5-19 Output delay 0.0s ~3600.0s 0.0s \$\phi\$ P5-22 DO Output terminal valid state selection 0. Positive logic 0.0000 \$\phi\$ P5-22 Valid state selection 0. Positive logic 00000 \$\phi\$ P5-22 Valid state selection Single digit: DO Ten digits: RELAY1 00000 \$\phi\$ P6-00 Startup mode 0. Direct start 0. Direct start 0. Speed tracking restart 0. Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 \$\phi\$ P6-01 Speed 0. Starting from the stop frequency 1. Starting from the power frequency 0 P6-01 Speed. 0. Starting from the way the inverter tracks the motor speed. 0 \$\phi\$ P6-02 Speed 1 ~100 20 \$\phi\$	-					
P5-19 Output delay 0.0s ~3600.0s 0.0s \$ P5-22 DO Output terminal valid state selection 0: Positive logic 000000 P5-22 Single digit: DO Ten digits: RELAY1 000000 P6-00 Startup mode 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0: Starting from the power frequency P6-01 Speed 0: Starting from the power frequency 2: Startup from the power frequency P6-02 Speed 1 ~100 20						
P6-00 Example 1 0. Positive logic 1. Reverse logic Single digit: DO Ten digits: RELAY1 Hundreds digits: RELAY2 00000 \$\$ P6-00 Startup mode 0. Direct start 1. Speed tracking restart 2. Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 \$\$ P6-01 Speed tracking method 0. Starting from the stop frequency 2. Starting from the maximum frequency 2. Starting from the maximum frequency 2. Starting from the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 \$\$ P6-02 Speed 1 ~100 20 \$\$	P5-19		0.0s ∼3600.0s	0.0s	☆	
P5-22 DO Output terminal valid state selection 0: Positive logic 1: Reverse logic Single digit: DO Ten digits: RELAY1 Hundreds digits: RELAY2 00000 ☆ P6-00 Startup mode 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 ☆ P6-01 Speed tracking method 0: Starting from the power frequency 2: Starting from the maximum frequency 2: Starting from the maximum frequency 2: Starting from the maximum frequency 2: Starting from the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★				5.00		
P5-22 Do Output terminal valid state selection 1: Reverse logic Single digit: DO Ten digits: RELAY1 00000 ☆ P6-00 Startup mode 0: Direct start 0: Direct start 0 0 P6-00 Startup mode 0: Direct start 1: Speed tracking restart 0 ☆ P6-00 Startup mode 0. Starting for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 ☆ P6-01 Speed 0: Starting from the stop frequency 1: Starting from the power frequency 0 P6-01 Speed. 1: Starting from the maximum frequency 0 ★ P6-02 Speed 1 ~100 20 ☆			0: Positive logic			
P5-22 Iterminal valid state selection Single digit: DO Ten digits: RELAY1 Hundreds digits: RELAY2 00000 * P6-00 Startup mode 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed method 0: Starting from the stop frequency 1: Starting from the power frequency 2: Starting from the maximum frequency 2: Starting from the maximum frequency 2: Starting from the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. • P6-02 Speed 1 ~100 20 *		terminal	ő			
P6-00 Startup mode 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed method 0: Starting from the stop frequency 1: Starting from the power frequency 2: Starting from the maximum frequency 3: Starting from the maximum frequency 3: Starting from the maximum frequency 3: Starting from the maximum frequency 4: Sta	P5-22		°	00000	\$	
P6-00 Startup mode 0: Direct start 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed tracking method 0: Starting from the stop frequency 1: Starting from the maximum frequency 2: Starting from the maximum frequency 1: Starting from the maximum frequency 2: Starting from the maximum frequency 3: Starting from the maximum frequency 3: Starting from the maximum frequency 3: Starting from the maximum frequency 4: Starting from the maximum frequ			Ten digits: RELAY1			
P6-00 0: Direct start Startup mode 0: Direct start 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 P6-01 Speed tracking method 0: Starting from the stop frequency 2: Starting from the power frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~100 20 ☆		selection	Hundreds digits: RELAY2			
P6-00 Startup mode 1: Speed tracking restart 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed tracking method 0: Starting from the stop frequency 1: Starting from the power frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 * P6-02 Speed 1 ~100 20 *			P6 group start and stop control			
P6-00 Startup mode 2: Pre-excitation start (AC asynchronous machine) Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed tracking method 0: Starting from the stop frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 * P6-02 Speed 1 ~100 20 *			0: Direct start			
P6-00 mode Startup mode Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed tracking method 0: Starting from the stop frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 * P6-02 Speed 1 ~100 20 *						
P6-00 mode Only valid for asynchronous motors, used to establish a magnetic field before the motor is running. Pre-excitation current and pre-excitation time are described in function codes P6-05 and P6-06. 0 * P6-01 Speed tracking method 0: Starting from the stop frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 * P6-02 Speed 1 ~ 100 20 *		Startup				
P6-01 Speed racking method 0: Starting from the stop frequency 1: Starting from the power frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~ 100 20 ☆	P6-00	·		0	☆	
P6-01 Speed 0: Starting from the stop frequency nethod 0: Starting from the power frequency 0: Starting from the power frequency P6-01 1: Starting from the power frequency 0: Starting from the maximum frequency nethod 2: Starting from the maximum frequency 0 people 3 Speed 1 P6-02 Speed 1 ~100 20						
P6-01 0: Starting from the stop frequency 1: Starting from the power frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~100 20 \$						
P6-01 Speed tracking method 1: Starting from the power frequency 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~100 20 ★						
P6-01 Speed tracking method 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~100 20 ×						
P6-01 1 cacking method 2: Starting from the maximum frequency Complete the speed tracking process in the shortest time and select the way the inverter tracks the motor speed. 0 ★ P6-02 Speed 1 ~100 20 ☆		Speed				
Pe-02 Speed 1 ~100 20 \$\frac{1}{3}\$	P6-01	tracking			*	
P6-02 Speed 1 ~ 100 20 \$\frac{1}{3}\$		method				
P6-02 Speed 1 ~100 20 📩						
P6-02 20 📩			•			
tracking The larger the parameter, the faster the tracking	P6-02	Speed	1 ~100	20	5.7	
		tracking	The larger the parameter, the faster the tracking	20	~	

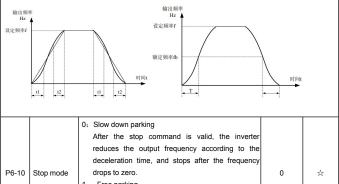
		anend Heurever, actting too large may equipe the		
		speed. However, setting too large may cause the		
		tracking effect to be unreliable.		
P6-03	Starting frequency	0.00Hz~10.00Hz	0.00Hz	☆
	Start			
P6-04	frequency	0.0s ∼100.0s	0.0s	*
	hold time			
To ensu		e at start-up, set the appropriate starting frequency. In o	rder to fully e	stablish t
		e motor starts, the starting frequency needs to be mainta		
of time.				
The sta	rt frequency P	6-03 is not limited by the lower limit frequency. Howev	ver, when the	set targ
		he start frequency, the inverter does not start and is in th		-
	-	d time does not work during the forward and reverse swi	-	
The sta	rt frequency ho	Id time is not included in the acceleration time, but is in	cluded in the	run time
the simp	ole PLC.			
example	e 1:			
P0-03 =	=0 F	requency source is digital given		
P0-08 =	=2.00Hz 1	The digital setting frequency is 2.00Hz		
P6-03 =	=5.00Hz	Starting frequency is 5.00Hz		
P6-04 =	=2.0s	Start frequency hold time is 2.0s		
At this p	oint, the inverte	er will be in standby mode and the inverter output frequer	ncy will be 0.0	0Hz.
Example	e 2:			
P0-03 =	=0 F	requency source is digital given		
P0-08 =	=10.00Hz	The digital setting frequency is 10.00Hz		
P6-03 =	=5.00Hz	Starting frequency is 5.00Hz		
P6-04 =	=2.0s	Start frequency hold time is 2.0s		
At this p	point, the invert	er accelerates to 5.00 Hz for 2.0 s and then accelerates	to a given fr	requency
10.00 H	Z.			
	Start DC			
	braking			
P6-05	current /	0% ~100%	0%	*
	pre-excitatio			
	n current			
	Start DC			
	braking time			
P6-06	/	0.0s ∼100.0s	0.0s	*
. 0-00		0.00 100.00	0.03	
	pre-excitatio			
Start DO	C braking, whic	ch is generally used to stop the running motor and the	n start. Pre-e	excitation
used to	make the asy	nchronous motor establish a magnetic field before start	ing, which im	nproves th

response speed.

Starting DC braking is only effective when the startup mode is direct startup. At this time, the inverter first performs DC braking according to the set starting DC braking current, and then starts running after the DC braking time is started. If the DC braking time is set to 0, it will start directly without DC braking. The greater the DC braking current, the greater the braking force.

If the starting mode is asynchronous machine pre-excitation start, the inverter first establishes the magnetic field according to the set pre-excitation current, and then starts running after the se pre-excitation time. If the pre-excitation time is set to 0, it will start directly without the pre-excitation process.

The DC braking current / pre-excitation current is activated, and there are two cases with respect to the base value.


 When the rated current of the motor is less than or equal to 80% of the rated current of the inverter it is the percentage base value relative to the rated current of the motor.

2. When the rated current of the motor is greater than 80% of the rated current of the inverter, it is relative to 80% of the rated current of the inverter as a percentage base value.

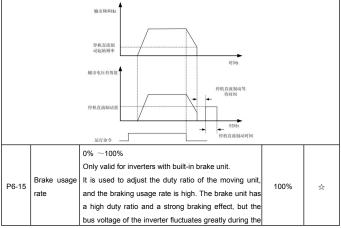
P6-07	Acceleration and deceleration	 0: Linear acceleration and deceleration The output frequency is incremented or decremented by a straight line. The JAC300 offers 4 acceleration and deceleration times. It can be selected through the multi-function digital input terminals (P4-00 to P4-08). 1: S curve acceleration and deceleration A The output frequency is incremented or decremented according to the S-curve. The S-curve is used in places where gentle start or shutdown is required, such as elevators, conveyor belts, etc. Function codes P6-08 and P6-09 define the time ratio of the start and end segments of the	*
		The output frequency is incremented or	
		decremented according to the S-curve. The	
	Acceleration	S-curve is used in places where gentle start or	
P6-07	and	shutdown is required, such as elevators, conveyor 0	*
	deceleration	belts, etc. Function codes P6-08 and P6-09 define	
		the time ratio of the start and end segments of the	
		S-curve acceleration/deceleration, respectively.	
		2: S curve acceleration and deceleration B	
		In this S-curve acceleration/deceleration B, the	
		motor rated frequency f b is always the inflection	
		point of the S-curve. As shown in Figure 6-12. It is	
		generally used in applications where rapid	
		acceleration and deceleration are required in	
		high-speed areas above the rated frequency.	

		When the set frequency is above the rated frequency, the acceleration/deceleration time is: $t = \left(\frac{4}{9} \times \left(\frac{f}{f_b}\right)^2 + \frac{5}{9}\right) \times T$ <i>f</i> is the set frequency,/b is the rated frequency of the motor, and T is the time from the 0 frequency acceleration to the rated frequency <i>f</i> b.				
P6-08	S curve start time ratio	0.0%~(100.0%-P6-09)	30.0%	*		
P6-09	S curve end period time ratio	0.0%~(100.0%-P6-08)	30.0%	*		
The fur	ction codes P	6-08 and P6-09 respectively define the ratio of the sta	art and end	time of the		
S-curve	acceleration/de	eceleration A. The two function codes must satisfy: P6-08	8 + P6-09 ≤	100.0%.		
In the f	In the figure below, t1 is the parameter defined by parameter P6-08, and the slope of the output					
frequen	frequency change gradually increases during this period. T2 is the time defined by parameter P6-09					

during which the slope of the output frequency change gradually changes to zero. During the time between t1 and t2, the slope of the output frequency change is fixed, that is, the interval is linearly accelerated or decelerated.

1 : Free parking	
After the stop command is valid, the inverter	
immediately terminates the output, and the motor is	
free to stop according to the mechanical inertia.	

P6-11	Stop DC braking start frequency	0.00Hz~Maximum frequency	0.00Hz	\$
P6-12	DC brake waiting time	0.0s ~100.0s	0.0s	\$
P6-13	DC braking current at stop	0% ~100%	0%	☆
P6-14	DC braking time at stop	0.0s ~100.0s	0.0s	\$


DC braking start frequency at stop: During the deceleration stop, when the running frequency decreases to this frequency, the DC braking process starts.

DC brake waiting time at stop: After the running frequency is reduced to the stop DC braking star frequency, the inverter stops output for a period of time before starting the DC braking process. It is used to prevent malfunctions such as overcurrent that may be caused by starting DC braking at highe speeds.

DC braking current at stop: DC braking current at stop, there are two cases relative to the base value.

 When the rated current of the motor is less than or equal to 80% of the rated current of the inverter it is the percentage base value relative to the rated current of the motor.

2. When the rated current of the motor is greater than 80% of the rated current of the inverter, it is the relative base value of 80% of the rated current of the inverter. DC braking time at stop: The time during which the DC braking amount is maintained. This value is 0 and the DC braking process is cancelled. The DC braking process at stop is shown in the figure below.

		braking process.		
		30% ~200%		
	Speed	The maximum current limit of the speed tracking	Model	
P6-18	tracking	process is within the range of the "speed tracking	determinat	*
	current	current" setting. If the set value is too small, the effect	ion	
		of the speed tracking will be worse.		
	1	P7 group keyboard and display		
		0: M key is invalid		
		1: The operation panel command channel is switched		
		between the remote command channel (terminal		
		command channel or communication command		
		channel). If the current command source is		
		keyboard control, this button function is invalid.		
	M key	2: Forward and reverse switching		
P7-01	function	Use the M key to switch the direction of the	0	*
	selection	frequency command. This function is only available		
		when the command source is the operator panel		
		command channel.		
		3: Forward jog		
		Forward rotation by keyboard M key (FJOG)		
		4: Reverse jog		
		Reverse jog through keyboard M key (RJOG)		
	STOP/RESE	0 : STOP/RES key stop function is valid only in		
P7-02	T key	keyboard operation mode	1	☆
1702	function	1: The STOP/RES key stop function is valid in any		~
	lanoton	mode of operation.		
		0000~FFFF		
		Bit00: operating frequency1(Hz)		
		Bit01: setting frequency(Hz)		
		Bit02: busbar voltage(V)		
	LED	Bit03: output voltage(V)		
P7-03	operation	Bit04: Output current(A)	1F	\$
	display	Bit05: Output Power(kW)		
	parameter 1	Bit06: Output torque(%)		
		Bit07: DI Input status		
		Bit08: DO Output status		
		Bit09: Al1Voltage(V)		
		Bit10: AI2Voltage(V)		

-				
		Bit11: Al3 Voltage(V)		
		Bit12: Count value		
		Bit13: Length value		
		Bit14: Load speed display		
		Bit15: PID set up		
		0000~FFFF		
		Bit00: PID Feedback		
		Bit01: PLC stage		
		Bit02: PULSE Input pulse frequency (kHz)		
		Bit03: Operating frequency 2 (Hz)		
		Bit04: Remaining running time		
		Bit05: Al1 pre-correction voltage(V)		
	LED Run	Bit06: Al2 pre-correction voltage(V)		
P7-04	display	Bit07: Al3 pre-correction voltage(V)	0	☆
	parameter 2	Bit08: Line speed		
		Bit09: Current power-on time(Hour)		
		Bit10: Current running time(Min)		
		Bit11: PULSE input pulse frequency (Hz)		
		Bit12: Communication setting		
		Bit13: Encoder feedback speed(Hz)		
		Bit14: Main frequency X displayHz)		
		Bit15: Auxiliary frequency Y display(Hz)		

Run display parameters, which are used to set the parameters that can be viewed when the inverter is running.

The maximum number of status parameters that can be viewed is 32. According to the P8-03 and P7-04 parameter values, the status parameters to be displayed are selected. The display order starts from the lowest bit of P7-03.

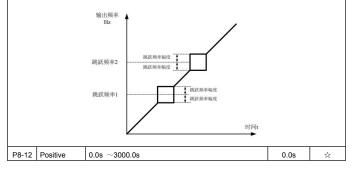
-				
		0000~FFFF		
		Bit00: Setting frequency(Hz)		
		Bit01: busbar voltage(V)		
		Bit02: DI Input status		
	LED stop	Bit03: DO Output status		
P7-05	display	Bit04: Al1 Voltage(V)	33	☆
	parameter	Bit05: Al2 Voltage(V)		
		Bit06: AI3 Voltage(V)		
		Bit07: Count value		
		Bit08: Length value		
		Bit09: PLC stage		

		enter Oser Manu				
		Bit10: Load speed	1			
		Bit11: PID set up				
		Bit12: PULSE Inp	ut pulse frequency (kHz)			
		0.0001~6.5000				
		When the load s	peed needs to be displayed, the			
P7-06	Load speed	corresponding rela	tionship between the inverter output	1.0000		
P7-06	display factor	frequency and the	e load speed is adjusted by this	1.0000	☆	
	lactor	parameter. Refer	to the description of P7-12 for the			
		specific correspond	dence.			
	Module					
P7-07	radiator	$0.0^{\circ}{ m C}{\sim}100.0^{\circ}{ m C}$		-	•	
	temperature					
P7-08	product code	-		-	•	
		0h \sim 65535h				
P7-09	Cumulative	When the running	time reaches the set running time		•	
17-03	running time	P8-17, the inverter	multi-function digital output function	-	•	
		(12) outputs ON sig	gnal.			
	P8 group auxiliary function					
P8-00	Jog running frequency		0.00Hz~Maximum frequency	2.00Hz	☆	
P8-01	Jog acceleration time		0.0s ~6500.0s	20.0s	☆	
P8-02	Jog decelerati	on time	0.0s ∼6500.0s	20.0s	☆	
	• •		n/deceleration time of the inverter who the direct start mode (P6-00=0), ar	,	ode is fixe	
	eceleration stop					
		· · ·		Model		
P8-03	acceleration ti	me2	0.0s ~6500.0s	determinat	☆	
				ion		
				Model		
P8-04	deceleration ti	me2	0.0s ~6500.0s	determinat	☆	
				ion		
				Model		
P8-05 acceleration ti		me3	0.0s ~6500.0s	determinat	☆	
				ion		
				Model		
P8-06	deceleration ti	me3	0.0s ~6500.0s	determinat	\$	
				ion		
P8-07	acceleration ti	me4	0.0s ~6500.0s	Model	\$	
/		-				

			determinat	
			ion	
			Model	
P8-08	deceleration	0.0s \sim 6500.0s	determinat	☆
	time 4		ion	

The JAC300 provides 4 sets of acceleration/deceleration time, which are P0-17\P0-18 and the above three groups of acceleration and deceleration time.

The definitions of the 4 groups of acceleration and deceleration time are exactly the same. Please refer to the related instructions of P0-17 and P0-18.

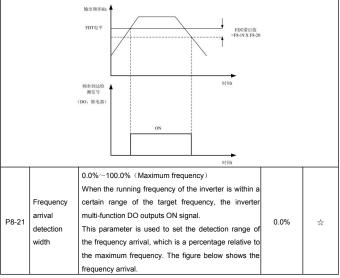

Through the different combinations of the multi-function digital input terminals DI, you can switch between 4 groups of acceleration/deceleration time. For details, please refer to the related instructions in function codes P4-01 to P4-05.

P8-09	Jump frequency1	0.00Hz~Maximum frequency	0.00Hz	☆
P8-10	Jump frequency2	0.00Hz~Maximum frequency	0.00Hz	☆
P8-11	Jump frequency amplitude	0.00Hz~Maximum frequency	0.01Hz	Å

When the set frequency is within the hopping frequency range, the actual operating frequency will rur at a hopping frequency that is closer to the set frequency. By setting the skip frequency, the frequency converter can be prevented from avoiding the mechanical resonance point of the load.

The JAC300 can set two skip frequency points. If both skip frequencies are set to 0, the skip frequency function is canceled.

The principle of the jump frequency and the frequency of the jump frequency, please refer to the following figure

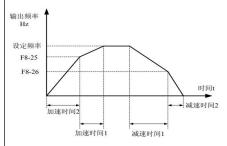


	reversal	Set the transition time at the output 0Hz during the		
	dead time	forward/reverse transition of the inverter, as shown		
		below:		
P8-13	Reverse frequency prohibition	0: allow 1 : Prohibited	0	Å
P8-14	Set the frequency lower than the lower limit frequency operation mode	 Running at the following frequency limit Downtime Zero speed operation When the set frequency is lower than the lower limit frequency, the operating state of the inverter can be selected by this parameter. 	0	*
P8-15	Droop control	0.00Hz~10.00Hz This function is generally used for load distribution when multiple motors are dragging the same load. The droop control means that as the load increases, the output frequency of the inverter decreases, so that when multiple motors are dragged by the same load, the output frequency of the motor in the load drops more, thereby reducing the load of the motor and realizing the operation of multiple motors. The load is even. This parameter refers to the frequency drop value of the output when the inverter outputs the rated load.	0.00Hz	*
P8-16	Set the cumulative power-on	0h~65000h When the accumulated power-on time (P7-13) reaches the power-on time set by P8-16, the inverter	0h	\$

	arrival time	multi-function digital DO outputs an ON signal.		
P8-17	Set cumulative run arrival time	0h~65000h Used to set the running time of the inverter. When the accumulated running time (P7-09) reaches this set running time, the inverter multi-function digital DO outputs ON signal.		☆
P8-18	Start protection selection	 0: No protection 1 : protection This parameter relates to the safety protection function of the frequency converter. If the parameter is set to 1, if the running command of the inverter is valid (for example, the terminal running command is closed before power-on), the inverter does not respond to the running command, and the running command must be removed once. After the running command is valid again. The inverter responds. In addition, if the parameter is set to 1, if the running command of the inverter fault reset time is valid, the inverter does not respond to the running command, and the running command of the inverter fault reset time is valid, the inverter does not respond to the running command, and the running command must be removed before the running protection state can be eliminated. Setting this parameter to 1 can prevent the danger caused by the motor responding to the running command when the power is turned on or when the fault is reset without knowing it. 	0	\$
P8-19	Frequency detection value(PDT1)	0.00Hz~Maximum frequency	50.00Hz	☆
P8-20	Frequency detection hysteresis(P DT1)	0.0%~100.0% (PDT1 electrical level)	5.0%	Å

When the running frequency is higher than the frequency detection value, the multi-function output DC of the inverter outputs ON signal, and after the frequency is lower than the certain frequency value o the detected value, the DO output ON signal is canceled.

The above parameters are used to set the detection value of the output frequency and the hysteresis value of the output action release. Where P8-20 is the percentage of the hysteresis frequency relative to the frequency detection value P8-19. The figure below shows a schematic diagram of the PDT function.

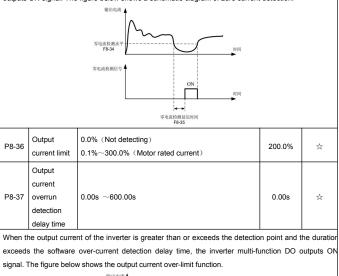


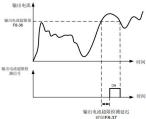
	0 001100 mit			
		協問照率11. 役之編年 税定編年 務時代に設 適回当		
P8-22	Whether the jump frequency is valid during acceleration and deceleration	0: invalid 1: effective This function code is used to set whether the skip frequency is valid during acceleration and deceleration. When set to valid, when the running frequency is in the skip frequency range, the actual running frequency will skip the set skip frequency boundary. The figure below shows the effective hopping frequency during acceleration and deceleration. 输出频率 Itz Itz Itz Itz Itz Itz Itz Itz	0	ż
P8-25	Acceleration time 1 and acceleration time 2 switching	0.00Hz~Maximum frequency	0.00Hz	¥

JAC300 Series Inverter User Manual

	frequency points			
P8-26	Deceleration time 1 and deceleration	0.00Hz~Maximum frequency	0.00Hz	42

This function is valid when the motor is selected as motor 1 and the acceleration/deceleration time is not selected by DI terminal switching. It is used to select different acceleration/deceleration time according to the operating frequency range without running through the DI terminal during the running of the inverter.


The figure above is a schematic diagram of the acceleration/deceleration time switching. During the acceleration process, if the running frequency is less than P8-25, the acceleration time 2 is selected; if the running frequency is greater than P8-25, the acceleration time 1 is selected.


During deceleration, if the running frequency is greater than P8-26, the deceleration time 1 is selected. If the running frequency is less than P8-26, the deceleration time 2 is selected.

	<u> </u>			
P8-27	Terminal jog priority	0: invalid 1: valid When the terminal jog priority is valid, if the terminal jog command appears during operation, the inverter switches to the terminal jog operation state.	0	☆
P8-28	Frequency detection value(PDT2)	0.00Hz~Maximum frequency	50.00Hz	☆
P8-29	Frequency detection hysteresis(P DT2)	0.0%~100.0% (PDT2 electrical level)	5.0%	À
P8-30	Arbitrary arrival	0.00Hz~Maximum frequency	50.00Hz	☆

	frequency			
	detection			
	value 1			
	Arbitrary			
	arrival			
P8-31	frequency	0.0%~100.0% (Maximum frequency)	0.0%	☆
	detection			
	width 1			
	Arbitrary			
	arrival			
P8-32	frequency	0.00Hz~Maximum frequency	50.00Hz	☆
	detection			
	value 2			
		0.0%~100.0% (Maximum frequency)		
		When the output frequency of the inverter is within the		
		positive and negative detection range of any arrival		
		frequency detection value, the multi-function DO		
		outputs an ON signal.		
		JAC300 provides two sets of arbitrary arrival		
		frequency detection parameters, and sets the		
		frequency value and frequency detection range		
	Arbitrary	respectively. The figure below shows a schematic of		
	arrival	this function.		
P8-33	frequency	运行频率	0.0%	☆
	detection			
	width 2	/		
		任意到达频率		
		频率检出宽度		
		时间		
		任意到达频 ON ON		
		率检测信号 OFF OFF OFF		
		DO或继电		
	Zero current	0.0%~300.0%		
P8-34	detection		5.0%	☆
	level	100.0%Corresponding motor rated current		
	Current			
P8-35		0.01s∼600.00s	0.10s	
P8-35	detection	U.U IS~~0UU.UUS	0.105	☆
	delay time			

When the output current of the frequency inverter is less than or equal to the zero current detection level and the duration exceeds the zero current detection delay time, the inverter multi-function DC outputs ON signal. The figure below shows a schematic diagram of zero current detection.

P8-38	Arbitrary arrival current 1	0.0%~300.0%(Motor rated current)	100.0%	☆
P8-39	Arbitrary arrival current 1 width	0.0%~300.0%(Motor rated current)	0.0%	차
P8-40	Arbitrary arrival current 2	0.0%~300.0%(Motor rated current)	100.0%	☆

P8-41	Arbitrary current 2 widtl	arrival 0.0%~300.0%(Motor rated current)	0.0%	☆		
		tput current of the frequency inverter is within the	nositive and			
	negative detection width of any set current, the frequency inverter multi-function					
	DO outputs ON signal.					
		JAC300 provides two sets of arbitrary arrival current and detection width				
		he figure below shows the function diagram.	lection width			
	parameters. I	ne ligure below shows the function diagram.				
		输出电流 任意到达电流宽度 任意到达电流宽度				
	任意到达电 DO或:					
P8-42	Timing functio	n selection 0: invalid 1: valid	0	☆		
P8-43	Timing run time selection	0: P8-44 set up 1: Al1 2: Al2 3: Al3 Analog input range corresponds to P8-44		Å		
P8-44	Timed running time	0.0Min~6500.0Min	0.0Min	\$		
This gro		rs is used to complete the timing operation of the invert	er.			
-		function selection is valid, the frequency inverter will s		en it starts		
	-	eration time, the frequency inverter will stop automatica	-			
	output the ON s		-			
		starts, it starts from 0, and the remaining running time	e can be view	ed throug		
U0-20.				- 5		
The tim	ing running time	is set by P8-43 and P8-44, and the time unit is minute.				
P8-45	Al1 lower limit of input voltage protection value	0.00V ~P8-46	3.10V	☆		
P8-46		P8-45 ~10.00V	6.80V	\$		
			1 2.201	~		

JAC300 Series inverter User Manual				
	limit of input voltage protection value			
When the	ne value of an	alog input Al1 is greater than P8-46, or the Al1 input	is less than	P8-45, the
inverter	multi-function E	OO outputs "Al1 input overrun" ON signal to indicate v	vhether the in	put voltage
of Al1 is	within the set r	ange.		
P8-47	Module temperature reached	$\begin{array}{l} 0{}^\circ\!\mathrm{C}\sim\!100{}^\circ\!\mathrm{C}\\ \end{array}$ When the temperature of the inverter radiator reaches this temperature, the inverter multi-function DO outputs the "module temperature reached" ON signal.	75 ℃	4
P8-48	Cooling fan control	 0: Running fan operation 1: The fan is always running It is used to select the operation mode of the cooling fan. When 0 is selected, the inverter runs in the running state. If the radiator temperature is higher than 40 degrees in the shutdown state, the fan will run. When the radiator is below 40 degrees in the shutdown state, the fan will not operate. Running. When 1 is selected, the fan operates consistently after power-on. 	0	☆
P8-49	Wake-up frequency	dormancy frequency(P8-51) \sim Maximum frequency (P0-10)	0.00Hz	☆
P8-50	Wake-up delay time	0.0s ~6500.0s	0.0s	☆
P8-51	dormancy frequency	0.00Hz~dormancy frequency (P8-49)	0.00Hz	☆
P8-52	Wake-up delay time	0.0s ~6500.0s	0.0s	\$

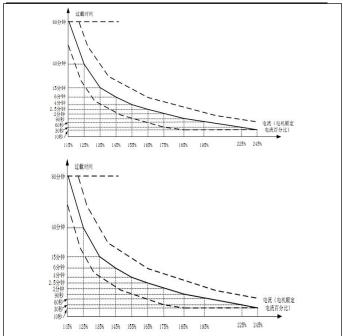
This set of parameters is used to implement sleep and wake-up functions in water supply applications. During the running of the inverter, when the set frequency is less than or equal to the sleep frequency of P8-51, after the delay time of P8-52, the inverter enters the sleep state and stops automatically.

If the inverter is in the sleep state and the current running command is valid, when the set frequency is greater than or equal to the P8-49 wake-up frequency, the inverter will start after the delay time or P8-50.

In general, please set the wake-up frequency to be greater than or equal to the sleep frequency. Wher the wake-up frequency and sleep frequency are both set to 0.00 Hz, the sleep and wake-up functions are invalid.

When the sleep function is enabled, if the frequency source uses the PID, whether the sleep state PID

is calcu	is calculated or not is affected by the function code PA-28. At this time, the PID stop operation					
(PA-28=	(PA-28=1) must be selected.					
	1	Γ				
		0.0 ~6500.0 minute				
P8-53	Run arrival	When the running time of this startup reaches this	0.0Min	\$		
	time setting	time, the inverter multi-function digital DO outputs the		<u>^</u>		
		"this running time reaches" ON signal.				
	Output	0.00% ~200.0%				
P8-54	power	When the output power (U0-05) does not correspond	100.0%	\$		
	correction	to the expected value, the output power can be linearly		<u>^</u>		
	factor	corrected by this value.				
		P9 group failure and protection				
	Motor					
P9-00	overload	0: Prohibited	1	~		
P9-00	protection	1: allow	1	☆		
	option					
	Motor					
P9-01	overload	0.20 ~10.00	1.00	J.		
P9-01	protection	0.20 ~ 10.00	1.00	☆		
	gain					


P9-00=0: There is no motor overload protection function, there may be danger of motor overheating damage. It is recommended to heat the relay between the inverter and the motor;

P9-00=1: At this time, the inverter judges whether the motor is overloaded according to the inverse time curve of the motor overload protection.

The inverse time curve of motor overload protection is: $220\% \times (P9-01) \times motor rated current, the alarm motor is overloaded for 1 minute. Therefore, in order to effectively protect different load motors, i is necessary to set the parameters according to the motor overload capacity. Motor overload protection is an inverse time curve.$

The motor overload protection curve is shown below::

JAC300 Series Inverter User Manual

 When the motor running current reaches 175% of the rated motor current, the motor is overloaded after 2 minutes of continuous operation. (Err11);

Under the condition that the motor running current reaches 115% of the rated motor current, the motor overload (Err11) is reported after continuous operation for 80 minutes. For example: motor rated current 100A

If PB-01 is set to 1.00, then when the motor running current reaches 125% (125A) of 100A, the inverter will report motor overload fault after 40 minutes;

If PB-01 is set to 1.20, then when the motor running current reaches 125% (125A) of 100A, after 40°1.2=48 minutes, the inverter reports motor overload fault;

The maximum time is 80 minutes overload, and the shortest time is 10 seconds overload.

2) Motor overload protection adjustment example: The motor needs to run for 2 minutes with 150% motor current. The motor overload curve shows that 150% (I) current is at 145% (I1) and 155% (I2). Ir the current range, 145% of the current is 6 minutes (T1) overload, and 155% of the current is 4 minutes (T2) overload, then the default current setting of 150% of the motor rated current is 5 minutes. The

overload is calculated as follows:

T = T1 + (T2 - T1)*(I - I1)(I2 - I1) = 4 + (6 - 4)*(150% - 145%)/(155% - 145%) = 5 (分钟) It can be concluded that the motor needs to be overloaded for 2 minutes at 150% motor current, and the motor overload protection gain is:

P9-01 = 2 ÷ 5 = 0.4

3) The motor overload warning coefficient indicates that when the motor overload detection leve reaches the set value of the parameter, the multi-function output terminal DO or the fault relay (RELAY) outputs a motor overload pre-alarm signal, and the parameter continues to run according to the moto at an overload point. The percentage of time for reporting an overload fault is calculated.

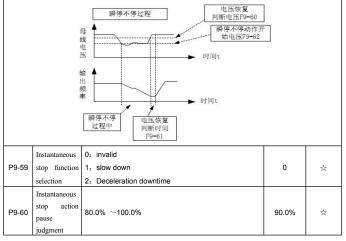
For example, when the motor overload protection gain is set to 1.00 and the motor overload warning coefficient is set to 80%, if the motor current reaches 145% of the rated motor current for 4.8 minutes ($80\% \times 6$ minutes), the multi-function output terminal DO Or the fault relay RELAY outputs a motor overload warning signal.

P9-02	Motor overload alarm coefficient	50%~100% This function is used to give the control system an early warning signal through the DO before the motor overload fault protection. This early warning coefficient is used to determine how much early warning is given before motor overload protection. The larger the value, the smaller the warning advance. When the cumulative output current of the inverter is greater than the product of the overload inverse time curve and P9-02, the multi-function digital DO of the inverter outputs the "motor overload pre-alarm" ON signal.		ጵ
P9-07	Power-on short circuit protection option	0: invalid 1: valid The inverter can be selected to detect whether the motor is shorted to ground when it is powered on. If this function is enabled, the UVW terminal of the inverter will have a voltage output for a period of time after power-on.	1	Хţ
P9-08	Brake unit action starting voltage	650.0V ~800.0V The starting voltage Vbreak of the built-in braking unit action, the setting of this voltage value reference: 800≥Vbreak≥ (1.414Vs+30) Vs- Enter the AC power supply voltage of the inverter	760V	Ŕ
P9-09	Number of automatic resets	0~20	0	ž

	Fault DO				
	action				
P9-10	selection	0: No action		0	
P9-10	during	1: action		0	☆
	automatic				
	fault reset				
P9-11	Fault auto	0.1s \sim 100.0s		1.0s	
P9-11	reset interval	0.18~100.08		1.05	☆
		Single digit: Input p	hase loss protection option		
		Ten digit: Contactor	suction protection option		
		0: Prohibited			
		1: allow			
		Choose whether to	protect the input phase loss or		
	Input phase	contactor pull-in.			
		JAC300 inverter input phase loss \ contactor suction			
		protection start mode	el see the following table:		
	loss \		Input phase loss \ contactor		
P9-12	contactor suction	Voltage level	suction protection start model	11	☆
		Single phase			
	protection option	220V	No in full series		
	option	Three phase	750000		
		380V	7.5kW G type machine		
		The JAC300 inverte	er has only the above initial power		
		and above for the ir	nput phase loss and the contactor		
		pull-in function. T	he following power segments,		
		regardless of P9-12	set to 0 or 1, have no input phase		
		loss, contactor pull-in	n Protective function.		
	Output				
D0 10	phase loss	0 Drobibited 1	allowed	1	
P9-13	protection	0: Prohibited 1	: allowed	1	\$
	option				

P9-14	First fault type	5: Acceleration over voltage6: Deceleration over voltage	_	•
		7: Constant speed over voltage 8: Buffer resistor overload 9: Undervoltage		
P9-15	Second fault type	 Frequency inverter overload Motor overload Input phase loss Output phase loss Module over temp External fault Abnormal communication Abnormal Contactor Abnormal current detection Abnormal motor tuning Abnormal Parameter read and write Abnormal frequency inverter hardware Motor short circuit to ground 	_	•
P9-16	Third (most recent) fault type	30: Officau	_	•
P9-17	Frequency o recent) fault	f the third (most _	_	•
P9-18	Current of the fault	hird (most recent) _	_	•
P9-19	Bus voltage	at the third (most -	-	•

	recent) fault		
P9-20	Input terminal status for the third	_	•
P9-21	Output terminal status for the	_	•
P9-22	Inverter status at the third (most	_	•
P9-23	Power-on time for the third (most recent) fault	-	•
P9-24	Run time for the third (most recent) fault	-	•
P9-27	Frequency at the second fault	-	•
P9-28	Current at the second — fault	_	•
P9-29	Bus voltage at the - second fault	_	•
P9-30	Input terminal status during — the second fault	_	•
P9-31	Output terminal	_	•
P9-32	Frequency inverter status at the second fault	_	•
P9-33	Power-on time during — the second	_	•


	fault			
	Run time at			
P9-34	the second	-	-	•
	fault			
	Frequency			
P9-37	at the first	-	-	•
	fault			
	Current at			
P9-38	the first fault	-	-	•
	Bus voltage			
P9-39	at the first			•
F 9-39			_	•
	fault			
	Input			
P9-40	terminal	_	_	•
	status at the			
	first fault			
	Output			
P9-41	terminal		_	
F 9-41	status at the			•
	first fault			
	Frequency			
	Inverter			
P9-42	status at the	-	-	•
	first fault			
	Power-on			
P9-43	time at the	_	_	•
	first fault			
	Run time at			
P9-44	the first fault	—	-	•
		Single digit: Motor overload (Err11)		
		0: Free parking		
P9-47				
	action			
			00000	
		Ten digits: Input phase loss(Err12) (same as single	00000	☆
	selection 1	digit)		
		Hundreds digit: Output phase loss(Err13) (same as		
		single digit)		
		Thousand digits : External fault(Err15) (same as		

		single digit)		
		Ten thousand digits: Abnormal communication(Err16)		
		(same as single digit)		
		Single digit: Reserved		
		Ten digits : Abnormal function code read and write		
	Fault	(Err21)		
	protection	0 Free Downtime		
P9-48	action	1 Stop by downtime mode	00000	☆
	selection 2	Hundreds digit: Reserved		
		Thousand digits: Reserved		
		Ten thousand digits: Run time arrives (Err26)		
		Single digit: User Defined Fault 1 (Err27)		
		Ten digits: User-defined fault 2(Err28)		
		Hundreds digit: Power on time arrives(Err29)		
	Fault	Thousand digits: Offload(30)		
		0: Free parking		
P9-49	protection	1: Stop by downtime mode	00000	☆
	action	2: Jump directly to 7% of the rated motor frequency		
	selection 3	and continue to run. It will automatically return to the		
		set frequency when it is not loaded.		
		Ten thousand digits : Loss of PID feedback (Err31)		
		during operation (same as P9-47 digits)		
		Single digit: Speed deviation is too large(Err 42)		
	Fault	0: Free parking		
		1: Stop by downtime mode		
P9-50	protection	2: Keep running	00000	☆
	action	Ten digits: Motor overspeed(Err 43)		
	selection 4	Hundreds digit: Reserved		
		Thousand digits: Speed feedback error (Err52)		
When "I	- Freewheeling" i	s selected, the frequency inverter displays Err** and stop	s directly.	
When '	Stop in stop m	ode " is selected: The requency inverter displays A** ar	nd stops acco	rding to the
stop mo	de. After the st	op, Err** is displayed.		
When "	Continuous ope	ration" is selected: Ther equency inverter continues to r	un and displa	ys A**, and
the runr	ning frequency i	s set by P9-54.		
	Continue to	0: Run at the current operating frequency		
	run	1: Run at set frequency		
P9-54	frequency	2: Run at the upper limit frequency	0	☆
	selection	3: Run at the Lower limit frequency		
	when fault	4: Running at an abnormal backup frequency		
l			I	

occurs			
P9-55 freque abnorr	icy is frequency inverter and the fault is handled in the continuous mode, the inverter displays A** and runs	the the at 100.0%	\$

Instantaneous power failure continuous operation (instantaneous stop and stop)

As shown in the figure below: When the bus voltage drops below the "instantaneous stop non-stop action judgment voltage", the instantaneous stop non-stop process takes effect, the inverter outpu frequency automatically drops, the motor is in the power generation state, and the instantaneous stop non-stop function can give feedback. The electric energy to the bus voltage keeps the bus voltage a about "instantaneous stop and stop action judgment voltage", and the system is normally decelerated to 0 Hz.

	voltage			
P9-61	Instantaneous stop non-stop voltage rise judgment time	0.00s ~100.00s	0.50s	☆
P9-62	Instantaneous stop and stop action judgment voltage	60.0% \sim 100.0%(Standard bus voltage)	80.0%	\$
P9-71	Instantaneous stop non-stop gain KP	0 ~100	40	☆
P9-72	Instantaneous stop non-stop integral coefficient Ki	0 ~100	30	☆
P9-73	Instantaneous stop and stop motion deceleration time	0 ~300.0s	20.0s	*

Remarks:

(1) When the bus voltage is constant, when the grid resumes power supply, the inverter output frequency continues to run to the target frequency. When the grid is restored to power supply, the inverter continues to decelerate to 0 Hz and stops until the inverter issues a start command again...

(2) The purpose of instantaneous stop is to ensure that when the power supply of the power grid is abnormal, the motor can be decelerated and stopped normally, so that after the power grid is restored to normal power supply, the motor can be started immediately, and the motor will not suddenly undervoltage due to abnormal power supply in the grid. Free parking, in the large inertia system, the motor can take a long time to freely stop. When the power supply is normal, because the motor is rotating at high speed, it is easy to start the motor to cause overload or overcurrent fault.

P9-63	Offload protection option	0: invalid 1: valid	0	ž
P9-64	Offload detection level	0.0 ~100.0%	10.0%	\$
P9-65	Offload detection time	0.0 ~60.0s	1.0s	☆

If the load-shedding protection function is valid, when the inverter output current is less than the load-drop detection level P9-64 and the duration is longer than the load-off detection time P9-65, the inverter output frequency is automatically reduced to 7% of the rated frequency. During load-shedding protection, if the load recovers, the drive automatically resumes to operate at the set frequency.

P9-67	Overspeed detection value	0.0%~50.0 %(Maximum frequency)	20.0%	Ŕ
P9-68	Overspeed detection time	0.0s : Not detecting 0.1 ~60.0s	1.0s	☆

This function is only available when the drive is running with speed sensor vector control.

When the inverter detects that the actual speed of the motor exceeds the maximum frequency, the excess value is greater than the overspeed detection value P9-67, and the duration is longer than the overspeed detection time P9-68, the inverter fault alarm Err43, and according to the fault protection action mode.

When the overspeed detection time is 0.0s, the overspeed fault detection is canceled.

P9-69	Speed deviation excessive detection value	0.0%~50.0 %(Maximum frequency)	20.0%	4
P9-70	Speed deviation excessive detection time	0.0s : Not detecting 0.1 ∼60.0s	5.0s	Å

This function is only available when the drive is running with speed sensor vector control.

When the inverter detects that the actual speed of the motor deviates from the set frequency, the deviation amount is greater than the speed deviation excessive detection value P9-69, and the duration is greater than the speed deviation excessive detection time P9-70, the inverter fault alarm Err42, And according to the fault protection action mode.

When the speed deviation is too large and the detection time is 0.0s, the speed deviation excessive fault detection is canceled.

	PA group PID function					
PA-00	PID Given source	0: PA-01 set up 1: Al1 2: Al2 3: Al3 4: PLUSE Pulse given 5: Communication given 6: Multi-segment instruction given	0	*		

PA-01	PID Numerical given	0.0%~100.0%	50.0%	☆
PA-02	PID Feedback source	0: Al1 1: Al2 2: Al3 3: Al1-Al2 4: PLUSE Pulse given 5: Communication given 6: Al1+Al2 7: MAX([Al1], [Al2]) 8: MIN([Al1], [Al2])	0	Å
PA-03	PID Direction of action	 Positive action When the feedback signal of the PID is less than the given amount, the inverter output frequency rises. Such as winding tension control occasions. reaction When the feedback signal of the PID is less than the given amount, the inverter output frequency drops. Such as unwinding tension control occasions. This function is affected by the inversion of the multi-function terminal PID (function 35), so pay attention to it during use. 	0	Å
PA-04	PID Given feedback range	$0\sim65535$ The PID given feedback range is a dimensionless unit for the PID given feedback range is a dimensionless unit for the PID given feedback rule of the given feedback of the PID is 100.0%, corresponding to the given feedback range PA-04. For example, if PA-04 is set to 2000, when the PID is given 100.0%, the PID given display U0-15 is 2000.	1000	\$
PA-05	Proportional gain Kp1	0.0 ~100.0	20.0	\$
PA-06	Integration timeTi1	0.01s ~10.00s	2.00s	☆
PA-07	Differential timeTd1	0.000s~10.000s	0.000s	☆

Proportional gain Kp1 :

Determine the adjustment strength of the entire PID regulator. The larger the Kp1, the greater the adjustment intensity. The parameter 100.0 indicates that when the deviation between the PII feedback amount and the given amount is 100.0%, the PID regulator adjusts the output frequency command to the maximum frequency.

Integration time Ti1:

Determine the strength of the PID regulator integral adjustment. The shorter the integration time, the greater the adjustment intensity. The integration time means that when the deviation between the PII feedback amount and the given amount is 100.0%, the integral regulator continuously adjusts throug this time, and the adjustment amount reaches the maximum frequency. Derivative time Td1:

Determine the strength of the PID regulator's adjustment to the rate of change of the deviation. The longer the differentiation time, the greater the adjustment intensity. The derivative time means tha when the feedback amount changes by 100.0% during this time, the adjustment amount of the differential regulator is the maximum frequency.

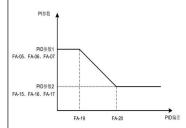
unicient	a regulator is t	ne maximum nequency.		
PA-08	PID Reverse cutoff frequency	0.00 to the maximum frequency In some cases, only when the PID output frequency is negative (ie, the inverter is reversed), it is possible for the PID to control the given amount and the feedback amount to the same state, but the excessive reverse frequency is not allowed for some occasions. , PA-08 is used to determine the upper limit of the reverse frequency.	2.00Hz	X
PA-09	PID Deviation limit	0.0%~100.0% When the deviation between the PID given amount and the feedback amount is less than PA-09, the PID stops the adjustment action. In this way, the output frequency is stable when the deviation from the feedback is small, which is effective for some closed-loop control applications.		Å
PA-10	PID Differential limiting	$0.00\% \sim 100.00\%$ In the PID regulator, the function of the differential is relatively sensitive and can easily cause the system to oscillate. For this reason, the role of PID differentiation is generally limited to a small range, and PA-10 is used to set the range of the PID differential output.	0.10%	ά
PA-11	PID Given change time	0.00 \sim 650.00s PID given change time, which refers to the time	0.00s	Z4

		required for the PID reference value to change from 0.0% to 100.0%. When the PID reference changes, the PID reference value changes linearly according to the given change time, which reduces the adverse effects of the given sudden change on the system.		
PA-12	PID Feedback filtering time	0.00 ~60.00s	0.00s	☆
PA-13	PID Output filtering time	0.00 ~60.00s	0.00s	*

The PA-12 is used to filter the PID feedback amount, which is beneficial to reduce the influence of the feedback amount being disturbed, but it will bring about a decrease in the response performance of the proces closed-loop system.

PA-13 is used to filter the PID output frequency, which will attenuate the sudden change of the inverter outpu frequency, but it will also bring about a decline in the response performance of the process closed-loop system.

PA-15	Proportional gain Kp2	0.0 ~100.0	20.0	☆
PA-16	Integration time Ti2	0.01s ~10.00s	2.00s	☆
PA-17	Differential time Td2	0.000s~10.000s	0.000s	☆
PA-18	PID Parameter switching condition	0: Do not switch 1: Switch by DI terminal 2: Automatic switching according to deviation	0	☆
PA-19	PID Parameter switching deviation 1	0.0%~PA-20	20.0%	☆
PA-20	PID Parameter switching deviation 2	PA-19 ~100.0%	80.0%	☆
In some	applications, a	a set of PID parameters cannot meet the requirements	of the entire	e runnin


process, and different PID parameters need to be used in different situations. This set of function codes is used for two sets of PID parameter switching. The setting of the regulato

This set of function codes is used for two sets of PID parameter switching. The setting of the regulato parameters PA-15~PA-17 is similar to the parameters PA-05~PA-07.

The two sets of PID parameters can be switched by the multi-function digital DI terminal o automatically according to the deviation of the PID.

When the multi-function DI terminal is selected for switching, the multi-function terminal function selection should be set to 43 (PID parameter switching terminal). When the terminal is invalid, selec parameter group 1 (PA-05~PA-07). When the terminal is valid, select the parameter group. 2 (PA-15~PA-17).

When automatic switching is selected, the absolute value of the deviation between the given and feedback is less than the PID parameter switching deviation 1 PA-19, the PID parameter selects parameter group 1. When the absolute value of the deviation between the reference and the feedback is greater than the PID switching deviation 2 PA-20, the PID parameter selection selects paramete group 2. When the deviation between the reference and the feedback is between the switching deviation 1 and the switching deviation 2, the PID parameter is the linear interpolation value of the two sets of PID parameters, as shown in the figure below.

PA-2	1 PID Initial value	0.0%~100.0%	0.0%	☆
PA-2	2 PID Initial value retention time	0.00 ~650.00s	0.00s	4

When the inverter starts, the PID output is fixed to the PID initial value PA-21. After the initial PID hold time PA-22, the PID starts the closed-loop adjustment operation. The figure below shows the function of the PID initial value.

	输出频率 FA.21 PID NULL FA.21				
PA-23	Two output deviation positive maximum	0.00% ~100.00%	1.00%	\$	
PA-24	Two output deviation reverse maximum	0.00% ~100.00%	1.00%	☆	
suppres PA-23 a	s the PID outpu nd PA-24 corre	 o limit the difference between PID output two beats (t from changing too fast and stabilize the inverter operati espond to the maximum value of the absolute value of directions, respectively. 	on.		
PA-25	PID Integral attribute	Unit position: integral separation 0: invalid 1: valid Ten digits: Whether to stop the integration after outputting to the limit 0: Continue to score 1: stop the points Integral separation: If the integral separation is enabled, when the multi-function digital DI integration pause (function 22) is valid, the integral PID integration pause (function 22) is valid, the integral PID integration of the PID stops counting, and the PID only proportional and derivative action is valid. When the integral separation selection is invalid, the integral separation is invalid regardless of whether the multi-function digital DI is valid or not. Whether to stop integration after output to the limit: After the PID operation output reaches the maximum of	00	Ŕ	

٦

		minimum value, you can choose whether to stop the			
		integration. If you choose to stop the integration, then			
		the PID integration stops counting, which may help			
		reduce the overshoot of the PID.			
	PID				
PA-26	Feedback	0.0%: Do not judge feedback loss	0.0%	_^_	
PA-20	loss detection	0.1%~100.0%	0.0%	☆	
	value				
	PID				
	Feedback				
PA-27	loss detection	0.0s ~20.0s	0.0s	☆	
	time				
This fund	ction code is us	ed to determine if the PID feedback is lost.			
		amount is less than the feedback loss detection value F	PA-26 and the	e duratio	
		back loss detection time PA-27, the inverter alarms			
		the selected fault processing mode.			
	PID				
PA-28	Downtime	0: stop does not operate	0	\$	
	operation	1: Operation at shutdown	-		
		PB group swing frequency, fixed length and count			
The swir	ng frequency fu	unction is suitable for textile, chemical fiber and other	industries, a	s well as	
occasion	is requiring trav	erse and winding functions.			
The swi	ing frequency fu	unction refers to the inverter output frequency, which swi	ngs up and de	own with	
the set f	roquonov as th	e center. The trajectory of the running frequency in the tir	no ovic io oc	chown in	
uie seu	requericy as the	e center. The trajectory of the furning nequency in the th	110 0115 15 05	SHOWITIN	
the figu	re below, where	e the swing amplitude is set by PB-00 and PB-01, when I	PB-01 When	set to 0,	
	1	the swing is 0, and the swing frequency does not work.			
输出部件由	Aw-Fiet	62 PB-01			
接続上記録車 中心部準Fact					
探察下限频率					
	NEW PARTY REAL PROVIDENT CONTRACTOR PROVIDENTE CONTRACT				
1617@\$					

		0: Relative to the center frequency (P0-07 frequency		
	Swing	source)		
	frequency	For the variable swing system. The swing varies with	0	
PB-00	setting	the center frequency (set frequency).	0	\$
	method	1: relative to the maximum frequency (P0-10)		
		For a fixed swing system, the swing is fixed.		
	Swing			
PB-01	frequency	0.0%~100.0%	0.0%	☆
	range			
	Kick			
PB-02	frequency	0.0%~50.0%	0.0%	☆
	amplitude			

This parameter is used to determine the value of the swing value and the kick frequency.

When setting the swing relative to the center frequency (PB-00 = 0), the swing AW = frequency source P0-07 × swing amplitude PB-01. When setting the swing relative to the maximum frequency (PB-00 = 1), the swing AW = maximum frequency P0-10 × swing amplitude PB-01.

The amplitude of the kick frequency is the percentage of the frequency of the kick frequency relative t the swing when the swing frequency is running, that is, the burst frequency = swing AW × kicl frequency amplitude PB-02. If the swing is selected relative to the center frequency (PB-00 = 0), the burst frequency is the change value. If the swing is selected relative to the maximum frequency (PB-00 = 1), the burst frequency is a fixed value.

Swing frequency operating frequency, subject to upper limit frequency and lower limit frequency

PB-03	Wobble cycle	0.1s ~3000.0s	10.0s	47
PB-04	Triangular wave rise time of swing frequency	0.1%~100.0%	50.0%	Å

Wobble cycle: The time value of a complete wobble cycle.

The triangular wave rise time coefficient PB-04 is the time percentage of the triangular wave rise time relative to the swing frequency period PB-03.

Triangle wave rise time = swing frequency period PB-03 × triangle wave rise time coefficient PB-04, in seconds.

Triangle wave fall time = swing frequency period PB-03 × (1 - triangle wave rise time coefficien PB-04), in seconds.

PB-05	Set length	0m ~65535m	1000m	☆
PB-06	Actual length	0m ∼65535m	0m	☆

PB-07 Pulse number per meter 0.1 ~6553.5 100.0	☆	
---	---	--

The above function code is used for fixed length control.

The length information needs to be collected through the multi-function digital input terminal. The number of pulses sampled by the terminal is divided by the number of pulses per meter PB-07, and the actual length PB-06 can be calculated. When the actual length is greater than the set length PB-05, the multi-function digital DO outputs the "length reached" ON signal.

During the fixed length control, the length reset operation can be performed through the multi-functio DI terminal (the DI function is selected as 28). For details, please refer to P4-00~P4-09.

In the application, the corresponding input terminal function needs to be set to "length count input (function 27).

PB-08	Set count	1 ~65535	1000	4
	value		1000	Z
	Specified		1000	~
PB-09	count value	1 ~65535	1000	X

The count value needs to be collected through the multi-function digital input terminal. In the application, the corresponding input terminal function needs to be set to "counter input" (function 25) When the count value reaches the set count value PB-08, the multi-function digital DO outputs "se count value reaches" ON signal, and then the counter Stop counting.

When the count value reaches the specified count value PB-09, the multi-function digital DO output the "specified count value reached" ON signal, at which time the counter continues to count until the "set count value" is stopped.

The specified count value PB-09 should not be greater than the set count value PB-08. The figure

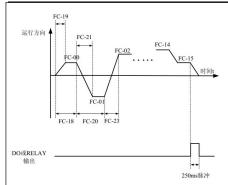
below shows the setting of the arrival of the count value and the arrival of the specified count value.

	#他的金ん 1 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10			
	PC 组	多段指令、简易 PLC	_	
PC-00	Multi-segment instruction 0	-100.0% ~100.0%	0.0%	☆
PC-01	Multi-segment instruction 1	-100.0% ~100.0%	0.0%	☆
PC-02	Multi-segment instruction 2	-100.0% ~100.0%	0.0%	☆
PC-03	Multi-segment instruction 3	-100.0% ~100.0%	0.0%	☆

PC-04	Multi-segment instruction 4	-100.0% ~100.0%	0.0%	☆
PC-05	Multi-segment instruction 5	-100.0% ~100.0%	0.0%	☆
PC-06	Multi-segment instruction 6	-100.0% ~100.0%	0.0%	☆
PC-07	Multi-segment instruction 7	-100.0% ~100.0%	0.0%	☆
PC-08	Multi-segment instruction 8	-100.0% ~100.0%	0.0%	☆
PC-09	Multi-segment instruction 9	-100.0% ~100.0%	0.0%	☆
PC-10	Multi-segment instruction 10	-100.0% ~100.0%	0.0%	☆
PC-11	Multi-segment instruction 11	-100.0% ~100.0%	0.0%	☆
PC-12	Multi-segment instruction 12	-100.0% ~100.0%	0.0%	☆
PC-13	Multi-segment instruction 13	-100.0% ~100.0%	0.0%	☆
PC-14	Multi-segment instruction 14	-100.0% ~100.0%	0.0%	☆
PC-15	Multi-segment instruction 15	-100.0% ~100.0%	0.0%	☆

JAC300 Series Inverter User Manual

Multi-segment instructions can be used in three situations: as a frequency source, as a voltage source for VF separation, as a set source for process PID.


In three applications, the dimension of the multi-segment instruction is relative value, the range it -100.0%-100.0%, which is the percentage of the relative maximum frequency when used as the frequency source; when it is the VF separation voltage source, it is relative to the rated voltage of the motor. Percentage; since the PID given is originally a relative value, the multi-segment instruction does not require a dimension conversion as a PID setting source.

Multi-segment instructions need to be switched according to the different states of the multi-function digital DI. For details, please refer to the relevant instructions of the P4 group.

	Simple PLC	0: Single run end shutdown			
PC-16	operation	1: the end of a single run to maintain the final value	0	☆	
	mode	2: Always cycle			

The simple PLC function has two functions: as a frequency source or as a voltage source for Vf separation.

Figure 6-31 is a schematic diagram of a simple PLC as a frequency source. When the simple PLC is used as the frequency source, the positive and negative of PC-00 to PC-15 determine the running direction. If it is negative, the inverter runs in the opposite direction.

When used as a frequency source, the PLC has three modes of operation. These three modes are no available as a VF separation voltage source. among them:

0: Single run end shutdown

After the inverter completes a single cycle, it will automatically stop and need to give the running command again to start.

1: the end of a single run to maintain the final value

After the inverter completes a single cycle, it automatically maintains the running frequency and direction of the last segment.

2: Always cycle

After the inverter completes a cycle, it automatically starts the next cycle until it stops when there is a stop command.

		Lisit Baura dava araa araa alaatiaa		
		Unit: Power-down memory selection		
		0: Power failure does not remember		
		1: Power-down memory		
		Ten digits: stop memory selection		
		0: stop without memory		
	Simple PLC	1: shutdown memory		
PC-17	power-down	PLC power-down memory refers to the operating	00	☆
	memory selection	phase and operating frequency of the PLC		
		before the power-down, and continues to run		
		from the memory phase the next time the power		
		is turned on. If you choose not to remember, the		
		PLC process will be restarted each time you		
		power up.		

		The PLC stop memory records the running		
		phase and running frequency of the previous		
		PLC when it stops, and continues to run from the		
		memory phase in the next run. If you choose not		
		to remember, the PLC process will be restarted		
		each time you start.		
PC-18	Simple PLC 0th run time	0.0s (h) ~6553.5s (h)	0.0s(h)	☆
PC-19	Simple PLC 0th acceleration/deceler	0.2	0	
PC-19	ation time selection	0~5	0	☆
PC-20	Simple PLC 1st run	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
	time	.,	/	
	Simple PLC first			
PC-21	stage acceleration	0~3	0	☆
PG-21	and deceleration	0~3	0	Ж
	time selection			
	Simple PLC 2nd run			
PC-22	time	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
	Simple PLC 2nd			
PC-23	section acceleration	0~3	0	☆
	and deceleration		-	~
	time selection			
PC-24	Simple PLC Stage 3	0.0s(h)∼6553.5s(h)	0.0s(h)	삷
4	Run Time		0.00(11)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Simple PLC 3rd			
PC-25	section acceleration	0~3	0	\$
- 0-20	and deceleration		U	м
	time selection			
	Simple PLC run			
PC-26	time of paragraph 4	0.0s(h)~6553.5s(h)	0.0s(h)	☆
	Simple PLC Stage 4			
	Acceleration/Decele			
PC-27	ration Time	0~3	0	☆
	Selection			
PC-28	Simple PLC 5th run	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
	time	l		

511050	o Series inverter			
PC-29	Simple PLC 5th acceleration/deceler ation time selection		0	*
PC-30	Simple PLC 6th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	\$
PC-31	Simple PLC 6th acceleration/deceler ation time selection		0	\$
PC-32	Simple PLC 7th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	\$
PC-33	Simple PLC 7th acceleration/deceler ation time selection		0	\$
PC-34	Simple PLC 8th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	\$
PC-35	Simple PLC 8th acceleration/deceler ation time selection		0	\$
PC-36	Simple PLC 9th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	저
PC-37	Simple PLC section 9 acceleration and deceleration time selection	0~3	0	Å
PC-38	Simple PLC run time of paragraph 10	0.0s(h)∼6553.5s(h)	0.0s(h)	\$
PC-39	Simple PLC section 10 acceleration and deceleration time selection	0~3	0	*
PC-40	Simple PLC section 11 running time	0.0s(h)∼6553.5s(h)	0.0s(h)	47
PC-41	Simple PLC 11th acceleration/deceler ation time selection		0	**

PC-42	Simple PLC 12th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
PC-43	Simple PLC 12th acceleration/deceler ation time selection		0	\$
PC-44	Simple PLC 13th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
PC-45	Simple PLC section 13 acceleration and deceleration time selection		0	☆
PC-46	Simple PLC 14th run time	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
PC-47	Simple PLC section 14 acceleration and deceleration time selection		0	Å
PC-48	Simple PLC section 15 running time	0.0s(h)∼6553.5s(h)	0.0s(h)	☆
PC-49	Simple PLC section 15 acceleration and deceleration time selection		0	\$
PC-50	Simple PLC runtime unit	0: s(second) 1: h(hour)	0	☆
PC-51	Multi-segment instruction 0 given mode	0: Function code PC-00 given 1: Al1 2: Al2 3: Al3 4: PULSE pulse 5: PID 6: Preset frequency (P0-08) is given, UP/DOWN can be modified	0	Å
		PD group communication parameters		

PD-00	Communicati on baud rate	Single digit: MODBUS 0: 300BPS 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS 5: 9600BPS 6: 19200BPS 7: 38400BPS 8: 57600BPS	5	*
PD-01	MODBUS Data Format	9: 115200BPS 0: no parity (8-N-2) 1: even parity (8-E-1)	0	☆
PD-02	Local address	2: odd parity (8-O-1) 3: no parity (8-N-1) 0: Broadcast address 1 ~247 (MODBUS)	1	☆
PD-03	MODBUS Response delay	0 ~20ms	2	☆
PD-04	Serial communicatio n timeout	0.0: invalid 0.1 ∼60.0s	0.0	¥
PD-05	MODBUS	Unit: MODBUS 0: Non-standard MODBUS protocol 1: Standard MODBUS protocol	1	☆
PD-06	Communicati on read current resolution	0: 0.01A 1: 0.1A	0	Å
		PP group function code management		
PP-00	user password	0 to 65535 PP-00 Set any non-zero number, then the password protection function will take effect. The next time you enter the menu, you must enter the password correctly. Otherwise, you cannot view and modify the function parameters. Please remember the user password you set. Set PP-00 to 00000 to clear the set user password and invalidate the password protection function.	0	<u>م</u>

PP-01	Parameter initialization	 0: no operation 01: Restore factory parameters, excluding motor parameters After setting PP-01 to 1, most of the inverter's function parameters are restored to the factory default parameters, but the motor parameters, frequency command decimal point (P0-22), fault record information, cumulative running time (P7-09), cumulative power-on Time (P7-13) and accumulated power consumption (P7-14) are not restored. 02: Clear record information Clear the inverter fault record information, accumulated running time (P7-09), accumulated power-on time (P7-13), and accumulated power consumption (P7-13), and accumulated power consumption (P7-14). 	0	*
PP-04	Function code modification attribute	0: Can be modified 1: Cannot be modified	0	Å
	1	Group A0 torque control parameters	1	1
A0-00	Speed / torque control mode selection	0: speed control 1: Torque control Used to select the inverter control mode: speed control or torque control. The JAC300's multi-function digital DI terminal has two functions related to torque control: torque control switching (function 29) and speed control/torque control switching (function 46). These two terminals are used in conjunction with A0-00 to achieve speed and torque control switching. When the speed control/torque control switching terminal is invalid, the control mode is determined by A0-00. If the speed control/torque control switching is valid, the control mode is equivalent to the inverse of the value of A0-00. In any case, when the torque control inhibit terminal is valid, the inverter is fixed to the speed control mode.	0	*
A0-01	Torque setting	0: Number setting 1 (A0-03) 1: Al1 2: Al2	0	*

		3: Al3 4: PLUSE pulse given 5: Communication given 6: MIN (Al1, Al2) 7: MAX (Al1, Al2) (1-7 full scale of the option, corresponding to the A0-03 number setting)		
A0-03	Torque digital setting in torque control mode	-200.0% ~200.0%	150.0%	\$2

A0-01 is used to select the torque setting source. There are 8 medium torque setting modes.

The torque setting uses a relative value, and 100.0% corresponds to the rated motor torque. The setting range is -200.0%~200.0%, which indicates that the maximum torque of the inverter is 2 times the rated torque of the inverter.

When the torque is given positive, the inverter runs forward

When the torque is given negative, the inverter runs in reverse

The various torque setting sources are described as follows:

0: Digital setting (A0-03)

Refers to the target torque directly using the A0-03 setpoint.

1: Al1

2: Al2

3: AI3

The target torque is determined by the analog input terminal. The JAC300 control board provides tw analog input terminals (Al1, Al2).

Where AI1 is 0V ~ 10V voltage type input

Al2 can be 0V~10V voltage input, or 4mA~20mA current input, selected by Al2 jumper on the contro board.

The input voltage value of Al1 and Al2 and the corresponding relationship with the target torque ca be freely selected by the user through P4-33.

4, PLUSE pulse given

5, communication given

The target torque is given by the communication method.

The data is given by the host computer through the communication address 0x1000. The data forma is -100.00% to 100.00%, and 100.00% refers to the percentage of the relative torque digital setting A0-03. The JAC300 supports the Modbus communication protocol. You need to select the corresponding serial communication protocol according to P0-28.

	Torque			
control				
A0-05	positive	0.00Hz~Maximum frequency	50.00Hz	☆
	maximum			
	frequency			
A0-06	Torque	0.00Hz~Maximum frequency	50.00Hz	-^-
A0-00	control		50.00112	\$

Interverse maximum frequency It is used to set the forward or reverse maximum running frequency of the inverter under the torque contromode. When the inverter torque is controlled, if the load torque is less than the motor output torque, the motor spee will continue to rise. To prevent accidents such as flying in the mechanical system, the maximum motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can control the upper limit frequency. 0.00s * A0-07 Torque control acceleration time 0.00s ~65000s 0.00s * A0-08 Control acceleration time 0.00s ~65000s 0.00s * A0-08 Torque control deceleration time 0.00s ~65000s 0.00s * A0-08 Torque control deceleration time 0.00s ~65000s 0.00s * A0-08 Torque control valid for VF control. 0.00s ~65000s 0.00s * A0-09 SouHz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. 8.00Hz * A5-00 In the 7-segment continuous modulation mode. In the 7-segment continuous modulation mode. 8.0		reverse								
If requency Image: Control acceleration It is used to set the forward or reverse maximum running frequency of the inverter under the torque contromode. When the inverter torque is controlled, if the load torque is less than the motor output torque, the motor spee will continue to rise. To prevent accidents such as flying in the mechanical system, the maximum motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can control the upper limit frequency. 0.00s ~65000s 0.00s \$\$ A0-07 Torque control acceleration time 0.00s ~65000s 0.00s \$\$ \$\$ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s \$\$ \$\$ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s \$\$ \$\$ A0-08 Torque control optimization parameters 0.00s \$\$ \$\$ \$\$ A0-08 Torque control optimization parameters \$\$ \$\$ \$\$ \$\$ \$\$ A0-08 Torque control optimization parameters \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ <										
It is used to set the forward or reverse maximum running frequency of the inverter under the torque controm mode. When the inverter torque is controlled, if the load torque is less than the motor output torque, the motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can controt the upper limit frequency. A0-07 Torque control control 0.00s acceleration 0.00s time 0.00s A0-08 0.00s control 0.00s deceleration 0.00s time 0.00s A0-08 5.00Hz to maximum frequency Only valid for VF control. 0.00s The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. A5-000 In the 7-segment intermittent debugging mode. A5-000 In the 5-segment intermittent debugging mode. frequency In the 5-segment intermit										
mode. When the inverter torque is controlled, if the load torque is less than the motor output torque, the motor spee will continue to rise. To prevent accidents such as flying in the mechanical system, the maximum motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can controt the upper limit frequency. 0.00s ☆ A0-07 Torque control acceleration of time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Forque control optimization parameters 5.00Hz to maximum frequency 0.00s ☆ A0-08 Switch upper has a large switching loss, but the current ripple is is segment intermittent modulation mode. In the 7-segment intermittent debugging mode. 8.00Hz ☆ A5-00 DPWM In the 5-segment intermittent debugging mode. 8.00Hz ☆ A5-01 In the 5-segment intermittent debugging mode. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise. 8.00Hz										
When the inverter torque is controlled, if the load torque is less than the motor output torque, the motor spee will continue to rise. To prevent accidents such as flying in the mechanical system, the maximum motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can controt the upper limit frequency. 0.00s 0.00s A0-07 Torque control acceleration time 0.00s 0.00s 0.00s \$		d to set the forw	ard or reverse maximum running frequency of the inverter	under the torq	ue contro					
will continue to rise. To prevent accidents such as flying in the mechanical system, the maximum motor spee during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can controt the upper limit frequency. 0.00s ∞ A0-07 Torque control acceleration time 0.00s ~<65000s	mode.									
during torque control must be limited. If you need to achieve dynamic continuous change of the torque control maximum frequency, you can control the upper limit frequency. A0-07 Torque control acceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control optimization parameters 5.00Hz to maximum frequency 0.00s ☆ DPWM Newe-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. 8.00Hz \$ A5-00 DPWM In the 7-segment continuous modulation mode. 8.00Hz \$ Immit frequency the switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and te		-								
If you need to achieve dynamic continuous change of the torque control maximum frequency, you can controp the upper limit frequency. Torque control acceleration 0.00s ~65000s 0.00s ☆ A0-07 Torque control acceleration time 0.00s ~65000s 0.00s ☆ ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ ☆ A0-08 Torque control optimization parameters 5.00Hz to maximum frequency 0.00s ☆ DPWM Newe-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. NoHz 8.00Hz A5-00 DPWM In the 7-segment continuous modulation mode. NoHz % Match upper has a large switching loss, but the current ripple is limit small; in the 5-segment intermittent debugging mode, frequency NoHz % Image: but at high frequencies, the motor may be caused. The instability of the operation generally does	will contin	nue to rise. To pi	revent accidents such as flying in the mechanical system, the	e maximum mo	otor spee					
the upper limit frequency. Torque control acceleration time 0.00s ~65000s 0.00s \$	during to	rque control mus	t be limited.							
A0-07 Torque control acceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Control deceleration time 0.00s ~65000s 0.00s ☆ A0-08 Deceleration time 0.00s ~65000s 0.00s ☆ A5-00 DPWM Newer-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. Newer-forming mode, and the opposite is the 5-segment continuous modulation mode. 8.00Hz ☆ A5-00 DPWM In the 7-segment continuous modulation mode. 8.00Hz ☆ Imit frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does no	If you ne	ed to achieve dy	namic continuous change of the torque control maximum fre	equency, you o	an contro					
A0-07 control acceleration time 0.00s ~65000s 0.00s * A0-08 Torque control deceleration time 0.00s ~65000s 0.00s * A0-08 Control deceleration time 0.00s ~65000s 0.00s * A5 group control optimization parameters 5.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. 8.00Hz * A5-00 DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is limit small; in the 5-segment intermittent debugging mode, frequency 8.00Hz * A5-00 PWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PVM 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *	the uppe	r limit frequency.	r							
A0-07 acceleration 0.00s ~65000s 0.00s ☆ A0-08 Torque control deceleration 0.00s ~65000s 0.00s ☆ A0-08 Control deceleration 0.00s ~65000s 0.00s ☆ Ime 0.00s ~65000s 0.00s ☆ Statistical deceleration 0.00s ~65000s 0.00s ☆ Ime Statistical deceleration 0.00s ~65000s 0.00s ☆ A5-00 DPWM In the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. 8.00Hz 8.00Hz A5-00 In the 7-segment continuous modulation mode, and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P3-11 for VF operation instab		Torque								
ACCELERATION International acceleration International acceleration time Torque control 0.00s ~65000s 0.00s ☆ A0-08 control 0.00s ~65000s 0.00s ☆ A5 group control optimization parameters Description International parameters S.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode. In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆	40.07	control	0.00- 05000-	0.00-						
Torque control deceleration 0.00s ~65000s 0.00s ☆ A0-08 control deceleration 0.00s ~65000s 0.00s ☆ A5 group control optimization parameters S.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. 8.00Hz A5-00 DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is limit 8.00Hz frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PWM Modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆	A0-07	acceleration	0.008 ~650008	0.005	¥					
A0-08 control deceleration time 0.00s ~65000s 0.00s \$		time	ne							
A0-08 0.00s ~65000s 0.00s ☆ Image: Control optimization parameters A5 group control optimization parameters 5.00Hz to maximum frequency 0.00s ☆ A5-00 5.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. 8.00Hz % A5-00 DPWM In the 7-segment continuous modulation, the inverter Switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. 8.00Hz ☆ A5-01 PWM 0: Asynchronous modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆		Torque								
A5 group control optimization parameters A5 group control optimization parameters 5.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 \dot{x} A5-03 Random 0: Random PWM is invalid 0 \dot{x}		control								
A5 group control optimization parameters 5.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. 8.00Hz \dot{x} A5-01 PWM 0: Asynchronous modulation 0 \dot{x} A5-03 Random 0: Random PWM is invalid 0 \dot{x}	A0-08	deceleration	eceleration							
A5-00 5.00Hz to maximum frequency Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. DPWM In the 7-segment continuous modulation mode. Switch upper has a large switching loss, but the current ripple is limit small; in the 5-segment intermittent debugging mode, frequency 8.00Hz frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 A5-03 Random 0: Random PWM is invalid 0		time								
A5-00 Only valid for VF control. The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is limit frequency 8.00Hz * A5-00 DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. 0 * A5-01 PWM 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *			A5 group control optimization parameters							
A5-00 The wave-forming mode of the asynchronous motor VF is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. 8.00Hz A5-00 In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is imit small; in the 5-segment intermittent debugging mode, frequency 8.00Hz A5-00 PWM In the 7-segment continuous modulation, the inverter switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. 8.00Hz Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. 0 A5-01 PWM 0: Asynchronous modulation 0 A5-03 Random 0: Random PWM is invalid 0			5.00Hz to maximum frequency							
A5-00 DPWM is determined. Below this value is the 7-segment continuous modulation mode, and the opposite is the 5-segment intermittent modulation mode. 8.00Hz Mathematical Switch upper In the 7-segment continuous modulation, the inverter switching loss, but the current ripple is is small; in the 5-segment intermittent debugging mode frequency 8.00Hz Mathematical Switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. 9.00Hz Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. 0 A5-01 PWM 0: Asynchronous modulation 0 A5-03 Random 0: Random PWM is invalid 0			Only valid for VF control.							
A5-00 DPWM In the 7-segment intermittent modulation mode, and the opposite is the 5-segment intermittent modulation mode. In the 7-segment intermittent modulation mode. 8.00Hz * A5-00 DPWM In the 7-segment continuous modulation, the inverter has a large switching loss, but the current ripple is small; in the 5-segment intermittent debugging mode, frequency 8.00Hz * A5-01 Mage: the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *			The wave-forming mode of the asynchronous motor VF							
A5-00 5-segment intermittent modulation mode. In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is limit small; in the 5-segment intermittent debugging mode, frequency 8.00Hz * A5-01 PWM In the 7-segment intermittent debugging mode, large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. 0 * A5-01 PWM Modulation 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *			is determined. Below this value is the 7-segment							
A5-00 DPWM In the 7-segment continuous modulation, the inverter Switch upper has a large switching loss, but the current ripple is imit small; in the 5-segment intermittent debugging mode. frequency 8.00Hz * A5-00 the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. 8.00Hz * A5-01 PWM 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *			continuous modulation mode, and the opposite is the							
A5-00 Switch upper has a large switching loss, but the current ripple is limit 8.00Hz A5-00 Smitch upper has a large switching loss, but the current ripple is frequency 8.00Hz frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise. please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 A5-03 Random 0: Random PWM is invalid 0		000444	0							
A5-00 limit small; in the 5-segment intermittent debugging mode, frequency 8.00Hz \$\$\phi\$ frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise. please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 \$\$\pmathcap\$ A5-03 Random 0: Random PWM is invalid 0 \$\$\pmathcap\$										
frequency the switching loss is small and the current ripple is large; but at high frequencies, the motor may be caused. The instability of the operation generally does not need to be modified. Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise. please refer to function code P0-15. A5-01 PWM Modulation 0: Asynchronous modulation A5-03 Random 0: Random PWM is invalid	A5-00			8.00Hz	☆					
A5-01 PWM Modulation 0: Random PWM is invalid 0: Ashon PWM is invalid		limit								
A5-01 PWM Modulation 0: Random PWM is invalid 0: Random PWM is invalid 0 *		frequency								
A5-01 PWM Modulation 0: Asynchronous modulation 0 * A5-03 Random 0: Random PWM is invalid 0 *										
Please refer to function code P3-11 for VF operation instability. For function loss and temperature rise, please refer to function code P0-15. PWM 0: Asynchronous modulation 0 Modulation 1: synchronous modulation 0 A5-03 Random 0: Random PWM is invalid 0										
Instability. For function loss and temperature rise. Image: please refer to function code P0-15. A5-01 PWM 0: Asynchronous modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆										
Please refer to function code P0-15. PWM 0: Asynchronous modulation 0 ☆ A5-01 Modulation 1: synchronous modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆										
A5-01 Modulation 0 ☆ A5-03 Random 0: Random PWM is invalid 0 ☆										
Modulation 1: synchronous modulation A5-03 Random 0: Random PWM is invalid 0	45.01	PWM	0: Asynchronous modulation	0						
45-03 0 ☆	A5-01	Modulation	1: synchronous modulation	U	\$					
	45.00	Random	0: Random PWM is invalid		-					
	AD-03	PWM depth	1 to 10: PWM carrier frequency rando	U	ম					

A5-04	Fast current limiting enable	0: not enabled 1: enable	1	☆	
A5-06 Undervoltage setting		60.0% ~140.0% It is used to set the undervoltage fault Err voltage levels is 100. voltage points, respecti Voltage level	1	\$	
		Simplex 220V Three phase 380V	200V 350V		
A5-09	Overvoltage setting	overvoltage fault. The filevels are: Voltage level Simplex 220V Three phase 380V Note: The factory valu internal overvoltage p parameter setting take setting value is less th	voltage value of the inverte actory values of different voltage Overvoltage point base value 400.0V 810.0V e is also the upper limit of the rotection of the inverter. Thi es effect only when the A5-0 han the factory default value of over the factory value, the factor	Model determinati on	*

U 0 group Monitoring parameter group

function code	name	Display range	mailing address
U0-00	Operating frequency (Hz)	0.00~320.00Hz(P0-22=2)	7000H
U0-01	Set frequency (Hz)	0.0~3200.0Hz(P0-22=1)	7001H
U0-02	Bus voltage (V)	0.0V~3000.0V	7002H

	JAC300	Series	Inverter	User	Manual
--	--------	--------	----------	------	--------

code U0-03		name				D : 1					
U0-03		name				Display rar	nge		mailing address		ss
	Output voltage (V)			0V~11	40V				7003H		
U0-04	Out	put current (A)			0.00A^	~655.35A				7004H	
U0-05	Out	put power (kW)			0~327	67				7005H	
U0-06		put torque (%) ue percentage o		-	-200.04	%~200.0%				7006H	
U0-07	DI ii	nput status			0~327	67				7007H	
	Displays the current DI terminal input status value. After conversion to binary data each bit corresponds to a DI input signal, with a value of 1 indicating that the input is a high level signal and a value of 0 indicating that the input is a low level signal. The correspondence between each bit and the input terminal is as follows:										
	CON	Bit0	wee	Bi		Bit2	ansasio	liows	: Bit	2	1
		DI1			12	DI3			DI	-	
					it5 Bit6			Bit7			
		DI5			16 DI7				DI8		
		Bit8							-		
		DI9 DI10									
U0-08	DO	Output status			0~1023				7008H		
	eac a va	plays the curren h bit correspond alue of 0 indicate put terminal is as	ls to es tha	a DO sig at the out	nal, a v	alue of 1 indic	ates tha	t the c	output	t is high,	and
		Bit0	E	Bit1		Bit2	Bit3				
		DO3	F	Relay 1		Relay 2	DO1				
		Bit4									
		DO2									
U0-09	AI1 Voltage (V)				0.01V					7009H	
U0-10	Al2 Voltage (V) / current (mA)			(mA)	0.00V~10.57V 0.00mA~20.00mA				700AH		
	is se	et to 0, the AI2 s									
		et to 1, the AI2 s	is set to 1, the Al2 sample data d			it is current (m	IA)				
	is se	et to 1, the AI2 si unt value	ample	e data dis	o∼655		IA)			700CH	
	a va outp Al1 Al2	alue of 0 indicate but terminal is at Bit0 DO3 Bit4 DO2 Voltage (V) Voltage (V) / cu	es tha s follo F F	at the out ows: Bit1 Relay 1 (mA) e data dis	put is lo	w. The corres Bit2 Relay 2 -10.57V ~20.00mA it is voltage (V	Bit3 DO1	ce bet	ween	eacl	9H

function					
code	name	Display range	mailing address		
U0-14	Load speed display	0~65535	700EH		
U0-15	PID set up	0~65535	700FH		
U0-16	PID Feedback	0~65535	7010H		
The PID set value and feedback value are displayed. The value format is as follows: PID setting = PID setting (percent) *PA-04 PID feedback = PID feedback (percent) *PA-04					
U0-17	PLC stage	0~65535	7011H		
U0-18	PULSE Input pulse frequency (Hz)	0~100KHz	7012H		
U0-19	Feedback speed (Hz)	-320.00Hz~320.00Hz -3200.0Hz~3200.0Hz	7013H		
Display the a	ctual output frequency of the inver	ter			
When P7-12	(load speed display decimal point)) is 1, the display range is -500.00Hz	to 500.00Hz		
When P7-12	(load speed display decimal point)) is 2, the display range is -3200.0Hz	z ~ 3200.0Hz		
U0-20	Remaining running time	0.0 to 6500.0 minutes When the timing operation is displayed, the remaining running time and timing operation are described in parameters P8-42 to P8-44.	7014H		
U0-21	Al1 Pre-correction voltage	0.000V~10.570V	7015H		
U0-22	Al2 Pre-correction voltage (V) / current (mA)	0.000V~10.570V 0.000mA~20.000mA	7016H		
Displays the analog input sampled voltage/current actual value. The voltage/current actually used is linearly corrected to minimize the deviation of the sampler voltage/current from the actual input voltage/current. See the U0-09, U0-10, and U0-11 for the calibration voltage/current actually used. See the AC group for the calibration method.					
U0-24	Line speed	0~65535 Meter/minute	7018H		
Displays the line speed of DI5 high-speed pulse sampling in meters per minute Calculate the line speed value according to the number of actual sample pulses per minute and PB-07 (pulse number per meter)					
U0-25	Current power-on time	0~6500 minute	7019H		
U0-26	Current running time	0.0~6500.0 minute	701AH		
U0-28	Communication setting	-100.00%~100.00%	701CH		
	1				

function					
code	name	Display range	mailing address		
U0-30	Main frequency X display	0.00Hz~500.00Hz	701EH		
U0-31	Auxiliary frequency Y display	0.00Hz~500.00Hz	701FH		
When P7-12	(load speed display decimal point)) is 1, the display range is -500.00Hz	to 500.00Hz		
When P7-12	(load speed display decimal point)) is 2, the display range is -3200.0Hz	z ~ 3200.0Hz		
U0-32	View any memory address value	0~65535	7020H		
U0-35	Target torque (%)	0.0°~359.9°	7023H		
U0-37	Power factor angle		7025H		
U0-39	VF Separation target voltage	0V~Motor rated voltage	7027H		
U0-40	VF Separate output voltage	0V~Motor rated voltage	7028H		
U0-41	DI Input status visual display		7029H		
Visual displ	ay of the status of the D	I terminal, its display format	is as follows		
	AD DIG DIT DIG DI				
U0-42	DO Input status visual display		702AH		
The D0 te	rminal status is displayed vi	sually, and its display format	is as follows		
	do2 ^{relay2} do3 —				
U0-43	DI function status visual display 1 (function 01 - function 40)		702BH		
Visually displ	ay whether terminal functions 1 to	40 are valid			
The keyboard	d has 5 digital tubes, and each dig	ital tube display can represent 8 fun	ction options.		
The digital tube is defined as follows:					
6] 1 2 4 DI端子功能有效显示					
Digital tubes represent functions from right to left 1 \sim 8, 9 \sim 16, 17 \sim 24, 25 \sim 32, 33 \sim 40					
U0-44	DI Functional status visual display 2 (function 41 - function		702CH		

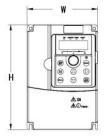
function code	name		Display range	mailing address		
	80)					
Visually displ	Visually display whether terminal functions 41 to 59 are valid					
Display mode	e is similar to U0-43					
The digital tu	The digital tube represents functions 41 to 48, 49 to 56, 57 to 59 from right to left.					
U0-45	accident details			702DH		
U0-59	Set frequency (%)		-100.00% ~100.00%	703BH		
U0-60	Operating frequency	(%)	-100.00% ~100.00%	703CH		
	Shows the current se maximum frequency	. ,	and running frequency, 100.00% c er (P0-10)	orresponds to the		
U0-61	Inverter status		0 ~65535	703DH		
The inverter r	unning status informa	tion is displa	ayed. The data definition format is as	s follows:		
	Bit0					
	Bit1	0: stop; 1: forward; 2: reverse				
U0-61	Bit2	0: constant speed; 1: acceleration; 2:				
	Bit3					
	Bit4	0: bus ve	oltage is normal; 1: undervoltage			

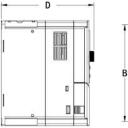
The U0 parameter group is used to monitor the running status information of the inverter. The customer can view it through the panel to facilitate on-site debugging. It can also read the parameter group value through communication for monitoring by the host computer. The communication address is 0x7000~0x7044.

Among them, U0-00~U0-31 are the running and shutdown monitoring parameters defined in P7-03 and P7-04.

Chapter 6 Selection and Size

6.1 Inverter electrical specifications


表 6-1 JAC300 Inverter model and technical data


				Adapter	motor	heat	
Inverter model	power supply capacity kVA	Input Current A	Output Current A	kW	HP	Power consu mption kW	
Single	phase power	supply: 2	20V, 50/60)Hz			
JAC300-0R4GB-S2-5013	1	5.4	2.3	0.4	0.5	0.016	
JAC300-0R7GB-S2-5013	1.5	8.2	4	0.75	1	0.030	
JAC300-1R5GB-S2-5013	3	14	7	1.5	2	0.055	
JAC300-2R2GB-S2-5013	4	23	9.6	2.2	3	0.072	
Thr	Three-phase power: 380V, 50/60Hz						
JAC300-0R7GB-4-5013	1.5	3.4	2.1	0.75	1	0.027	
JAC300-1R5GB-4-5013	3	5	3.8	1.5	2	0.050	
JAC300-2R2GB-4-5013	4	5.8	5.1	2.2	3	0.066	
JAC300-004GB-4-5013	5.9	10.5	9	3.7	5	0.120	
JAC300-5R5GB-4-5013	8.9	14.6	13	5.5	7.5	0.195	
JAC300-7R5GB-4-5023	11	20.5	17	7.5	10	0.262	
JAC300-11GB-4-5023	17	26	25	11	15	0.445	
JAC300-15GB-4-5030B	21	35	32	15	20	0.553	
JAC300-18GB-4-5030B	24	38.5	37	18.5	25	0.651	
JAC300-22B-4-5041B	30	46.5	45	22	30	0.807	
JAC300-30G-4-5042B	40	62	60	30	40	1.01	

JAC300-37G-4-5042B	57	76	75	37	50	1.20
JAC300-45G-4-5050B	69	92	91	45	60	1.51
JAC300-55G-4-5050B	85	113	112	55	75	1.80
JAC300-75G-4-5061B	114	157	150	75	100	1.84
JAC300-90G-4-5061B	134	180	176	90	125	2.08
JAC300-110G-4-5061B	160	214	210	110	150	2.55
JAC300-132G-4-5063	192	256	253	132	200	3.06
JAC300-160G-4-5063	231	307	304	160	250	3.61
JAC300-200G-4-5071B	250	385	377	200	300	4.42
JAC300-220G-4-5071B	280	430	426	220	300	4.87
JAC300-250G-4-5083	355	468	465	250	400	5.51
JAC300-280G-4-5083	396	525	520	280	370	6.21
JAC300-315G-4-5083	445	590	585	315	500	7.03

JAC300 Series Inverter User Manual

6.2 Inverter appearance and size

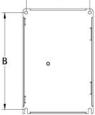
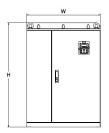



Figure 6-1 JAC300 series Plastic structure dimensions and installation dimensions

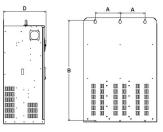


Figure 6-2 JAC300 series sheet metal structure dimensions and installation dimensions

		A (mm)	B(mm)	H(mm)	W(mm)	D(mm)	
model	Power						Mounting
moder	(KW)	Installati	on size		Dimensions		aperture
							(mm)
5013	0.75-5.5	113	172	186	125	165	φ5
5023	7.5-11	147	236	248	160	185	φ5
5030B	15-18.5	190	304	322	208	211	Φ6
5041B	22	194	336	352	208	215	Φ6
5042B	30-37	230	415	435	252	250	φ7
5050B	45-55	275	557	582	375	268	φ10
5061B	75-110	240	559	576	353	340	φ10
5063	132-160	145	686	705	403	345	φ 12
5071B	200-220	210	840	870	500	424	φ 12
5083	250-315	235	930	960	680	390	ф 16

Table 6-2 JAC300 appearance and mounting hole size

6.3 Keyboard size

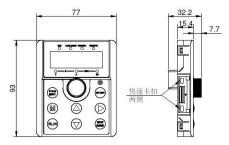


Figure 6-3 Dimensions of the keyboard

6.4 Keyboard bracket opening size

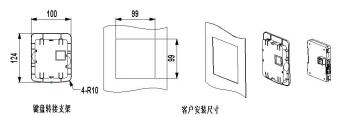


Figure 6-4 Keyboard bracket opening size

6.5 Selection of brake unit and braking resistor

Inverter model	Brake resistor recommended	Braking resistor	Brake unit	Remarks
	power	recommended		
		resistance		
	Simplex 22	0V		
JAC300-0R4GB-S2-5013	80W	≥200 Ω		
JAC300-0R7GB-S2-5013	80W	≥150 Ω	standard	No special
JAC300-1R5GB-S2-5013	100W	≥100 Ω	Built in	instructions
JAC300-2R2GB-S2-5013	100W	≥70Ω		
	Three phase	380V		
JAC300-0R7GB-4-5013	150W	≥300		
JAC300-1R5GB-4-5013	150W	≥220		
JAC300-2R2GB-4-5013	250W	≥200		
JAC300-004GB-4-5013	300W	≥130		
JAC300-5R5GB-4-5013	400W	≥90Ω	standard Built in	No special instructions
JAC300-7R5GB-4-5023	500W	≥65Ω		
JAC300-11GB-4-5023	800W	≥43Ω		
JAC300-15GB-4-5030B	1000W	≥32Ω		
JAC300-18GB-4-5030B	1300W	≥25Ω		

Table 6-3 JAC300 Inverter Brake Kit Selection Table

JAC300 Series Inverter User Manual

JAC300-22GB-4-5041B	1500W	≥22Ω		
JAC300-30G-4-5042B	2500W	≥16Ω		
JAC300-37G-4-5042B	3.7 kW	≥12.6 Ω		
JAC300-45G-4-5050B	4.5 kW	≥9.4Ω		
JAC300-55G-4-5050B	5.5 kW	≥9.4Ω	Optional	
JAC300-75G-4-5061B	7.5 kW	≥6.3Ω		
JAC300-90G-4-5061B	4.5 kW×2	≥9.4Ω×2		
JAC300-110G-4-5061B	5.5 kW×2	≥9.4Ω×2		
JAC300-132G-4-5063	6.5 kW×2	≥6.3Ω×2	External	
JAC300-160G-4-5063	16kW	≥6.3Ω×2	External	
JAC300-200G-4-5071B	20 kW	≥2.5Ω	External	
JAC300-220G-4-5071B	22 kW	≥2.5Ω	External	
JAC300-250G-4-5083	12.5 kW	≥2.5Ω×2	External	
JAC300-280G-4-5083	14kW×2	≥2.5Ω×2	External	
JAC300-315G-4-5083	16kW×2	≥2.5Ω×2	External	

Note: ×2 indicates that the two brake units are used in parallel with their respective braking resistors,

and ×3 has the same meaning as ×2.

Chapter 7 Maintenance and

Troubleshooting

7.1 Daily maintenance and maintenance of the inverter

7.1.1 Daily maintenance

Due to the influence of ambient temperature, humidity, dust and vibration, the internal components of the inverter may be deteriorated, resulting in potential failure of the inverter or reducing the service life of the inverter. Therefore, it is necessary to carry out daily and regular maintenance and maintenance of the inverter.

Daily inspection items:

- 1) Whether the sound changes abnormally when the motor is running
- 2) Is vibration generated during motor operation?
- 3) Does the inverter installation environment change?
- 4) Is the inverter cooling fan working properly?
- 5) Is the inverter overheated?
- 6) Daily cleaning:
- 7) Always keep the drive clean.

8) Effectively remove the dust on the surface of the inverter to prevent dust from entering the inverter.

Especially metal dust.

- 9) Effectively remove the oil from the inverter's cooling fan.
- 7.1.2 Daily maintenance

Please check regularly for places that are difficult to check during operation.

- Check the project regularly:
- 1) Check the air duct and clean it regularly
- 2) Check if the screws are loose
- 3) Check the inverter for corrosion
- 4) Check the wiring terminals for traces of arcing
- 5) Main circuit insulation test

Reminder: When measuring the insulation resistance with a megger (please use a DC 500V megger), disconnect the main circuit from the inverter. Do not test the control loop insulation with an insulation resistance meter. It is not necessary to perform a high voltage test (completed at the factory).

7.1.3 Replacement of consumable parts of the inverter

The consumable parts of the inverter mainly include cooling fans and electrolytic capacitors for filtering, and their service life is closely related to the environment and maintenance conditions used. The general life time is:

Device name	Life time	
fan	2 ~3 year	
Electrolytic capacitor	4 \sim 5 year	

Note: The standard replacement time is the time when it is used under the following conditions, and the user can determine the replacement period based on the running time.

- Ambient temperature: The annual average temperature is about 30 ° C
- Load rate: 80% or less
- Operating rate: less than 20 hours / day

1) Cooling fan

Possible causes of damage: bearing wear and blade aging.

Judging criteria: Whether there are cracks in the fan blades, etc., whether the sound has abnormal vibration when starting up.

2) Filter electrolytic capacitor

Possible causes of damage: poor input power quality, high ambient temperature, frequent load jumps, and electrolyte aging.

Judging criteria: Whether there is liquid leakage, whether the safety valve has protruded, the measurement of electrostatic capacitance, and the measurement of insulation resistance.

7.1.4 Replacement of consumable parts of the inverter

After the user purchases the inverter, the following points must be noted for temporary storage and long-term storage:

 When storing, please put it into the packing box of the company as much as possible in the original packaging.

2) Long-term storage will cause deterioration of the electrolytic capacitor. It must be ensured that the power is turned on within 2 years. The power-on time must be at least 5 hours. The input voltage must be gradually raised to the rated value with a voltage regulator.

7.2 Warranty Description of the Inverter

1) The free warranty refers only to the drive itself.

2) Under normal use, if the fault or damage occurs, our company is responsible for the 18-month warranty (from the date of shipment, the bar code on the fuselage shall prevail, and the contract agreement shall be implemented according to the agreement), 18 months or more, Charge reasonable maintenance costs;

3) Within 18 months, certain maintenance costs should be charged if:

4) The user does not damage the machine as specified in the manual;

5) damage caused by fire, flood, voltage abnormality, etc.;

6) Damage caused by using the inverter for abnormal functions;

- 134 -

7) The relevant service fees are calculated according to the uniform standards of the manufacturer.

If there is a contract, the contract is prioritized.

7.2 Fault alarm and countermeasure

When a fault occurs in the operation of the JAC300 inverter system, the inverter will immediately protect the motor from output and the inverter fault relay contact will act. The inverter panel will display the fault code. The fault types and common solutions corresponding to the fault code are detailed in the table below. The list is for reference only. Please do not repair or modify it. If you cannot solve the problem, please contact our company or product agent for technical support.

Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
Inverter unit protection	Err01	1, the inverter output circuit is short circuit 2. The motor and inverter are too long. 3, the module is overheated 4, the internal wiring of the inverter is loose 5, the main control board is abnormal 6, the drive board is abnormal 7, the inverter module is abnormal	 Eliminate peripheral faults install reactor or output filter Check if the air duct is blocked, the fan is working properly, and the
accelerate Overcurrent	Err02	 There is grounding or short circuit in the output circuit of the inverter. The control mode is vector and no parameter identification is performed. the acceleration time is too short Manual torque boost or V/F curve is not suitable the voltage is low Start the motor that is rotating Sudden load during acceleration the frequency converter selection is too small 	identification 3, increase the acceleration time 4. Adjust manual boost torque or V/F curve 5, adjust the voltage to the normal range 6, select the speed tracking start or wait for the motor Stop and start again

Table 7-1 List of fault information	
-------------------------------------	--

	Orert		
Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
slow down Overcurrent	Err03	 There is grounding or short circuit in the output circuit of the inverter. The control mode is vector and no parameter identification is performed. the deceleration time is too short the voltage is low sudden load during deceleration no brake unit and brake resistor installed 	identification 3, increase the deceleration time 4, adjust the voltage to the normal range 5, cancel the sudden load
Constant speed Overcurrent	Err04	 There is grounding or short circuit in the output circuit of the inverter. The control mode is vector and no parameter identification is performed. the voltage is low Is there a sudden load during operation? the frequency converter selection is too small 	 Eliminate peripheral faults Perform motor parameter identification Adjust the voltage to the normal range cancel the sudden load select the inverter with a larger
accelerate Overvoltage	Err05	 the input voltage is too high There is an external force drag motor running during the acceleration process. the acceleration time is too short no brake unit and brake resistor installed 	range 2, cancel the additional power or install braking resistor 3, increase the acceleration time
slow down Overvoltage	Err06	 the input voltage is too high There is external force drag motor running during deceleration the deceleration time is too short no brake unit and brake resistor installed 	2, cancel the additional power or install braking resistor
Constant speed Overvoltage	Err07	 the input voltage is too high There is an external force drag motor running during the running 	 Adjust the voltage to the normal range cancel the additional power or

Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
		process.	install braking resistor
Control power failure	Err08	 The input voltage is not within the scope specified by the specification. 	, ,
Undervoltage fault	Err09	 instantaneous power outage The voltage at the input end of the inverter is not within the scope of the specification. the bus voltage is not normal the rectifier bridge and the buffer resistor are not normal the driver board is abnormal the control board is abnormal 	 adjust the voltage to the normal range Seek technical support
Frequency converter overload	Err10	stalls?	 Reduce the load and check the motor and mechanical conditions. select the inverter with a larger power level
Motor overload	Err11	 Is the motor protection parameter P9-01 set properly? Is the load too large or the motor stalls? the frequency converter selection is too small 	 Reduce the load and check the motor and mechanical conditions Select a frequency converter with
Input phase loss	Err12	three-phase input power is not normal the driver board is abnormal The lightning protection board is abnormal The main control board is abnormal.	4, seeking technical support
Output phase loss	Err13	 The lead of the inverter to the motor is not normal. Unbalanced three-phase output 	2. Check if the three-phase winding

Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
		of the inverter when the motor is running 3, the drive board is abnormal 4, the module is abnormal	In addition to failure 3. Seek technical support 4, seeking technical support
Module overheating	Err14	1, the ambient temperature is too high 2, the air duct is blocked 3, the fan is damaged 4, module thermistor is damaged 5, the inverter module is damaged	 reduce the ambient temperature clean up the air duct replace the fan replace the thermistor replace the inverter module
External device failure	Err15	 Input external fault signal through multi-function terminal DI Input the signal of the external fault through the virtual IO function 	1, reset operation
communicati on fail	Err16	 the host computer is not working properly the communication line is not normal The communication expansion card P0-28 is set incorrectly. The communication parameter PD group setting is incorrect. 	 correctly set the communication expansion card type correctly set the communication
Contactor malfunction	Err17	 The driver board and power supply are abnormal. the contactor is not normal 	 Replace the driver board or power board replace the contactor
Current detection fault	Err18	1, check the Hall device is abnormal 2, the driver board is abnormal	1, replace the Hall device 2, replace the driver board
Motor tuning failure	Err19	 The motor parameters are not set according to the nameplate. The parameter identification process times out. 	 Set the motor parameters correctly according to the nameplate Check the inverter to the motor lead

Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
EEPROM Read and write failure	Err21	1、EEPROM Chip damage	1、Replace the main control board
Inverter hardware failure	Err22	1、Overpressure 2、Overcurrent	 according to overvoltage fault handling Overcurrent fault handling
Short circuit to ground	Err23	1、Motor short to ground	1、Replace cable or motor
Accumulated running time to failure	Err26	1、Cumulative running time reaches the set value	1、Use the parameter initialization function to clear the record information
User-defined fault 1	Err27	 Input the signal of user-defined fault 1 through multi-function terminal DI Enter the signal of user-defined fault 1 through the virtual IO function. 	1, reset operation 2, reset operation
User-defined fault 2	Err28	 Input the signal of user-defined fault 2 through multi-function terminal DI Enter the signal of user-defined fault 2 through the virtual IO function. 	1,Reset operation
Accumulated power-on time to failure	Err29	1. The accumulated power-on time reaches the set value.	1, use the parameter initialization function to clear the record information
Download fault	Err30	1、The inverter running current is less than P9-64	 Check if the load is out or whether the P9-64 and P9-65 parameter settings are in line with the actual operating conditions.
Runtime PID Feedback loss failure	Err31	1, PID feedback is less than PA-26 set value	1, check the PID feedback signal or set PA-26 to a suitable value

Fault name	Operation panel display	Troubleshoot the cause	Troubleshooting
Wave-by-wav e current limiting fault	Err40	 Is the load too large or the motor stalls? the frequency converter selection is too small 	 Reduce the load and check the motor and mechanical conditions. select the inverter with a larger power level
Switching motor failure during operation	Err41	1.Change the current motor selection through the terminal during the running of the inverter.	1. After the inverter stops, the motor is switched.
Speed deviation is too large	Err42	 Encoder parameter setting is incorrect no parameter identification The speed deviation is too large. The detection parameters P9-69 and P9-70 are unreasonable. 	 set the encoder parameters correctly Perform motor parameter identification Set the detection parameters reasonably according to the actual situation.
Motor overspeed failure	Err43	 Encoder parameter setting is incorrect no parameter identification motor overspeed detection parameters P9-67, P9-68 settings are not reasonable 	 set the encoder parameters correctly Perform motor parameter identification Set the detection parameters reasonably according to the actual situation.
Motor over temperature fault	Err45	1, the temperature sensor wiring is loose 2, the motor temperature is too high	 Detect temperature sensor wiring and troubleshoot reduce the carrier frequency or take other heat dissipation measures to heat the motor

7.3 Fault alarm and countermeasure

The following fault conditions may be encountered during the use of the inverter. Please refer to the

following method for simple fault analysis:

Table 7-2 Common faults and their handling methods

Serial		possible reason	Solution
number	Fault phenomenon	possible reason	Solution
1	No display after power on	The grid voltage is not or too low; The switching power supply on the inverter drive board is faulty; The rectifier bridge is damaged; The inverter buffer resistance is damaged; Control board and keyboard failure; Connection between control board and driver board and keyboard Broken	Check the input power; Check the bus voltage; Re-insert 8-core and 28-core cable; Seek factory services;
2	Power on display Err23" Call the police	The motor or output line is shorted to ground; The inverter is damaged;	Use a shaker to measure the insulation of the motor and the output line; Seek factory services;
3	Frequently reported Err14 (module overheated) malfunction	The carrier frequency setting is too high; The fan is damaged or the air duct is blocked; Damage to the internal components of the inverter (thermocouple or other)	Reduce the carrier frequency (P0-15); Replace the fan and clean the air duct;
4	The motor does not rotate after the inverter is running.	(motor parameter); Poor contact between the	Reconfirm the connection between the inverter and the motor; Replace the motor or remove mechanical problems; Check and reset the motor parameters;
5	The DI terminal is disabled.	The parameter setting is incorrect;	Check and reset the relevant parameters of the P4 group;

Serial number	Fault phenomenon	possible reason	Solution
		External signal error; OP and +24V jumper loose; Control board failure;	Reconnect the external signal line; Reconfirm the OP and +24V jumpers; Seek factory services;
7	The inverter frequently reports overcurrent And overvoltage faults.	Motor parameter setting is incorrect; The acceleration and deceleration time is not suitable Load fluctuations;	Reset motor parameters or perform motor tuning; Set the appropriate acceleration and deceleration time; Seek factory services;
8	Power on (or running) Err17	Soft start contactor is not attracted:	Check if the contactor cable is loose; Check if the contactor is faulty; Check if the contactor 24V power supply is faulty; Seek factory services;

Appendix C: Modbus Communication Protocol

JAC300 series inverters provide RS485 communication interface and support Modbus-RTU slave communication protocol. The user can realize centralized control through computer or PLC, set the inverter running command through the communication protocol, modify or read the function code parameters, and read the working status and fault information of the inverter.

C.1 agreement content

The serial communication protocol defines the information content and usage format transmitted in serial communication. These include: host polling (or broadcast) format; host encoding method,

- 142 -

including: function code requiring action, transmission data and error checking. The response of the slave also adopts the same structure, including: action confirmation, return data and error check. If the slave receives an error while receiving information, or fails to complete the action requested by the host, it will organize a fault message as a response to the host.

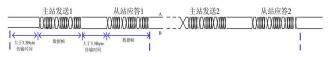
C.1.1 Application method

The inverter is connected to the "single-master multi-slave" PC/PLC control network with RS485 bus as the communication slave.

C.1.2 Bus structure

(1) Hardware interface

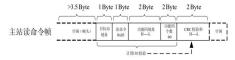
The motherboard interface number is 485+, 485-.

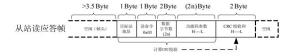

(2) Topology

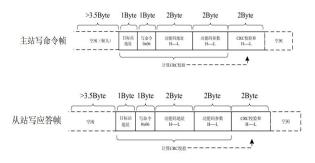
Single-master multi-slave system. Each communication device in the network has a unique slave address, and one of the devices acts as a communication host (usually a flat PC host computer, PLC, HMI, etc.), actively initiates communication, and performs parameter reading or writing operations on the slave. Other devices are in the communication slave, responding to the host's inquiry or communication operation to the machine. Only one device can send data at the same time, while other devices are in the receiving state.

The slave address can be set from 1 to 247, with 0 being the broadcast communication address. The slave address in the network must be unique.

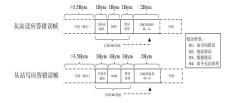
(3) Communication transmission method


Asynchronous serial, half-duplex transmission. In the process of serial asynchronous communication, the data is sent in one frame at a time in the form of a message. The MODBUS-RTU protocol stipulates that when there is no data idle time on the communication data line, the transmission time is greater than 3.5 bytes, indicating a new one. The start of the communication frame.


The built-in communication protocol of the JAC300 series inverter is the Modbus-RTU slave communication protocol, which can respond to the host's "query/command" or make corresponding actions according to the host's "query/command" and respond to the communication data. The host computer can be a personal computer (PC), an industrial control device or a programmable logic controller (PLC). The host can communicate with a slave separately and broadcast information to all slaves. For the individual access "query/command" of the host, the accessed slave returns an answer frame; for the broadcast information sent by the host, the slave does not need to feed back the response to the host.


C.2 Communication data structure

The Modbus protocol communication data format of JAC300 series inverter is as follows. The inverter only supports reading or writing of Word type parameters. The corresponding communication read operation command is 0x03; the write operation command is 0x06, and byte or bit read and write operations are not supported:


In theory, the host computer can read several consecutive function codes at a time (ie, n can be up to 12), but be careful not to cross the last function code of this function code group, otherwise it will reply the error.

If the slave detects a communication frame error, or the read/write is unsuccessful due to other

reasons, it will reply the error frame.

Data frame field description:

Frame header START	Idle more than 3.5 characters of transmission time
Slave address ADR	Address range: 1 \sim 247 ; 0 =Broadcast address
Command code CMD	03: Read slave parameters ; 06: Write slave parameters
Function code address H	The parameter address inside the inverter is expressed in hexadecimal; it is divided into function code type and non-functior
Function code addresst. code type (such as running status parameter, running comme parameters, etc. See the address definition for details. When transmitting, the high byte is first and the low byte is aft	
Number of function codes	The number of function codes read in this frame. If it is 1, it means that 1 function code is read. When transmitting, the high byte is first
	and the low byte is after. This protocol can only rewrite 1 function code
L	at a time, there is no such field.

	JAC300	Series	Inverter	User	Manual
--	---------------	--------	----------	------	--------

Data H	The data to be acknowledged, or the data to be written, is transmitted
Data L	with the high byte first and the low byte after.
CRC CHK High position	Detection value: CRC16 check value. When transmitting, the high
	byte is first and the low byte is after.
CRC CHK Low position	The calculation method is detailed in the description of the CRC check
	in this section.
END	3.5 characters

CRC check method:

The CRC (Cyclical Redundancy Check) uses the RTU frame format, and the message includes an error detection field based on the CRC method. The CRC field detects the contents of the entire message. The CRC field is two bytes and contains a 16-bit binary value. It is calculated by the transmission device and added to the message. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field. If the two CRC values

are not equal, the transmission has an error. The CRC is first stored in 0xPPPF and then a procedure is called to process the consecutive 8-bit bytes in the message with the values in the current register. Only the 8Bit data in each character is valid for the CRC, and the start and stop bits as well as the parity bit are invalid. During the CRC generation process, each 8-bit character is individually or XORed with the contents of the register, and the result moves to the least significant bit, with the most significant bit padded with 0s. The LSB is extracted for detection. If the LSB is 1, the register is individually or different from the preset value. If the LSB is 0, it is not performed. The entire process is repeated 8 times. After the last bit (bit 8) is completed, the next 8-bit byte is individually ORed with the current value of the register. The value in the final register is the CRC value after all the bytes in the message have been executed.

When the CRC is added to the message, the low byte is added first, then the high byte. The CRC simple function is as follows:

unsigned int crc_chk_value (unsigned char *data_value,unsigned char length)

{

```
unsigned int crc_value=0xPPPF;
int i;
while (length-- )
{
```

}

The address of the communication parameter defines the function of reading and writing function code (some function codes cannot be changed and are only used by the manufacturer or monitored):

C.3 function code parameter address marking rules

The rule is represented by the function code group number and label as the parameter address:

High byte: P0~PF (group F), A0~AF (group A), 70~7F (group U)

Low byte: 00~PF

For example, if the range function code P3-12 is required, the access address of the function code is represented as 0xP30C;

Note: PF group: neither parameters nor parameters can be changed;

Group U: Only readable, no parameters can be changed.

Some parameters cannot be changed while the inverter is running; some parameters cannot be changed regardless of the state of the inverter;

Change the function code parameters, and also pay attention to the range, unit, and related description of the parameters.

Function code group	Communication access	Communication modify the function	
number	address	code address in RAM	
P0~PE group	0xP000 \sim 0xPEPF	0x0000~0x0EPF	
A0~AC group	0xA000 ~0xACPF	0x4000~0x4CPF	
U0 group	0x7000~0x70PF		

Note that since the EEPROM is frequently stored, it will reduce the lifetime of the EEPROM, so some function codes are in communication.

In mode, there is no need to store, just change the value in RAM.

If it is a group F parameter, to achieve this function, simply change the high bit F of the function code address to 0.

If it is a group A parameter, to achieve this function, simply change the high bit A of the function code address to 4.

The corresponding function code address is expressed as follows:

High byte: 00~0F (group F), 40~4F (group A)

Low byte: 00~PF

For example, the function code P3-12 is not stored in the EEPROM, and the address is represented as 030C;

Function code A0-05 is not stored in EEPROM, the address is expressed as 4005;

This address indicates that the RAM can only be written, and the operation cannot be performed. When reading, it is an invalid address.

For all parameters, this function can also be implemented using command code 07H.

Stop/Run Parameters section:

Parameter address	Parameter address	Parameter address	Parameter Description
1000H	* Communication setting value (decimal) –10000 ~10000	1010H	PID Setting
1001H	Operating frequency	1011H	PID Feedback
1002H	bus voltage	1012H	PLC step
1003H	The output voltage	1013H	Reserved

1004H 1005H	Output current Output Power	1014H 1015H	Feedback speed in 0.1Hz Remaining running time
Parameter address	Parameter Description	Parameter address	Parameter Description
1006H	Output torque	1016H	Al1 Pre-correction voltage
1007H	Running speed	1017H	AI2 Pre-correction voltage
1008H	DI Input flag	1018H	Reserved
1009H	DO Output flag	1019H	Line speed
100AH	Al1 Voltage	101AH	Current power-on time
100BH	Al2 Voltage	101BH	Current running time
100CH	Al3 Voltage	101DH	Communication setting
100DH	Count value input	101EH	Actual feedback speed
100EH	Length value input	101FH	Main frequency X display
100FH	Load speed	1020H	Auxiliary frequency Y display

note:

The communication set value is a percentage of the relative value, 10000 corresponds to 100.00%, and -10000 corresponds to -100.00%.

For frequency dimension data, the percentage is a percentage of the relative maximum frequency (P0-10); for the torque dimension data, the percentage

The ratio is P2-10, A2-48, A3-48, A4-48 (torque upper limit digital setting, corresponding to the first and second motors respectively).

Control command input to the inverter: (write only)

Command word address	Command function	
	0001: Forward running	0005: Free stop
2000H	0002: Reverse run	0006: Deceleration stop

0003: Forward turn	0007: Fault reset
0004: Reverse jog	

Read the inverter status: (read only)

Status word address	Status word address	
	0001: Forward running	
3000H	0002: Reverse run	
	0003: Downtime	

Parameter lock password check: (If the return is 8888H, it means the password check is passed)

Password address	Enter the content of the password
1P00H	*****

Digital output terminal control: (write only)

Command address	Command content	
2001H	BIT0: DO1 Output control BIT1: Reserved	
	BIT2: RELAY1 Output control BIT3: Reserved	
	BIT4: FMR Output control	
	BIT4: FMR Output control	

Analog output AO1 control: (write only)

Command address	Command content
2002H	0 ~7PFF Express 0%~100 %

Analog output AO2 control: (write only)

Command address	Command content
2003H	0 ~7PFF Express 0%~100 %

Drive fault description:

Inverter fault address	Inverter fault information	
8000H	0000: Trouble free 0001: Reserved 0002: Accelerating overcurrent 0003: Deceleration over current	0012: Current detection fault 0013: Motor tuning failure 0015: Parameter read and write exception 0016: Inverter hardware failure

0004: Constant speed over	0017: Motor short circuit to ground
current	001A: Run time arrives
0005: Accelerated overvoltage	001B: User-defined fault 1
0006: Deceleration	001C: User-defined fault 2
overvoltage	001D: Power on time arrives
0007: Constant speed	001E: Offload
overvoltage	001F: Runtime PID feedback is lost
0008: Buffer resistor overload	0028: Fast current limit timeout
fault	failure
0009: Undervoltage fault	0029: Switching motor failure during
000A: Inverter overload	operation
000B: Motor overload	002A: Speed deviation is too large
000C: Input phase loss	002B: Motor overspeed
000D: output phase loss	005A: Encoder line number setting
000E: Module overheated	error
000F: external fault	005E: Speed feedback error
0010: Communication error	
0011: Contactor is abnormal	

C.4 PD group communication parameter description

	Baud rate	Factory default	5
		Unit digit: MC	DBUS baud rate
		0: 300BPS	5: 9600BPS
PD-00	Predetermined	1: 600BPS	6: 19200BPS
	area	2: 1200BPS	7: 38400BPS
		3: 2400BPS	8: 57600BPS
		4: 4800BPS	9: 115200BPS

This parameter is used to set the data transmission rate between the host computer and the inverter. Note that the baud rate set by the host computer and the inverter must be the same. Otherwise, the communication cannot be performed. The higher the baud rate, the faster the communication speed.

PD-01	Data Format	Factory default	0

	0: No parity: data format <8, N, 2>	
Predetermined	1: Even check: data format <8, E, 1>	
area	2: Odd parity: data format <8, O, 1>	
	3: No parity: data format <8-N-1>	

The data format set by the host computer and the inverter must be the same. Otherwise, the communication cannot be performed.

	Local address Factory default		1	
PD-02	Predetermined	1~247 0 B	roadoast addross	
	area	1~247 , 0 Broadcast address		

When the local address is set to 0, it is the broadcast address, and the host computer broadcast function is realized. The local address is unique (except for the broadcast address), which is the basis for the point-to-point communication between the host computer and the inverter.

	Response delay	Factory default	2ms
PD-03	Predetermined area	0-	~20ms

Response delay: refers to the interval between the end of the inverter data reception and the transmission of data to the host computer. If the response delay is less than

The system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system processes

After the data is finished, wait until the response delay time expires before sending data to the host computer.

PD-04	Communication timeout	Factory default	0.0 s
	Predetermined area	0.0 s (invalid); 0.1~60.0s	

When the function code is set to 0.0 s, the communication timeout time parameter is invalid.

When the function code is set to a valid value, if the interval between one communication and the next communication exceeds the communication timeout period, the system will report a communication failure error (Err16). Normally, it is set to be invalid. If you set the secondary parameters in a continuous communication system, you can monitor the communication status.

PD-05	Communication	Factory default	1
		1.50	

protocol selection		
Predetermined	0: Non-standard Modbus protocol; 1: Standard	
area	Modb	us protocol

PD-05=1: Select the standard Modbus protocol.

PD-05=0: When the command is read, the number of bytes returned by the slave is one byte more than the standard Modbus protocol. For details, refer to the "5 Communication Data Structure" section of this protocol.

PD-06	Communication read current	Factory default	0
	resolution		
	Predetermined area	0: 0.01A ; 1: 0.1A	

The output unit used to determine the current value when the communication reads the output current...

Warranty agreement

1) The warranty period of this product is 18 months (subject to the fuselage bar code information).

Under the normal use of the product under the warranty period, the product is faulty or damaged.

Our company is responsible for free maintenance.

 During the warranty period, damage will be caused due to the following reasons: A certain maintenance fee will be charged:

A. Damage to the machine caused by mistakes in use and unauthorized repairs and modifications;

B. Machine damage caused by fire, flood, voltage abnormality, other natural disasters and secondary disasters;

C. Hardware damage caused by human fall and transportation after purchase;

D. Damage to the machine caused by the operation of the user manual provided by our company;

E. Failure and damage caused by obstacles other than the machine (such as external equipment factors);

 When the product is faulty or damaged, please fill in the contents of the Product Warranty Card correctly and in detail.

 The collection of maintenance costs shall be subject to the latest revised "Maintenance Price List" of our company.

5) This warranty card will not be reissued under normal circumstances. Please be sure to keep this

card and present it to the maintenance personnel at the time of warranty.

6) If there is any problem during the service process, please contact our agent or our company in time.

7) The right to interpret this agreement belongs to Zhejiang Jiale Science and Technology Co., Ltd.

Zhejiang Jiale Science and Technology Co., Ltd.

customer service center

Address: Jiaxing City, Zhejiang Province

National unified service telephone: 400-680-9991 Zip code: 314300

Website: www.jarol.com.cn

warranty card

	Unit address:	
client information	company name:	Contact:
	Postal code:	contact number:
	Product number:	
product information	Body barcode (paste here):	
	Agent name:	
	(Maintenance time and conte	ent):
malfunction		
		Repair man: